導航:首頁 > 研究方法 > 系統聚類分析方法六種

系統聚類分析方法六種

發布時間:2023-11-24 12:00:53

㈠ 系統聚類的原理

確定了距離和相似系數後就要進行分類。分類有許多種方法,最常用的一種方法是在樣品距離的基礎上定義類與類之間的距離。首先將n個樣品分成n類,每個樣品自成一類,然後每次將具有最小距離的兩類合並,合並後重新計算類與類之間的距離,這個過程一直持續到將所有的樣品歸為一類為止,並把這個過程畫成一張聚類圖,參照聚類圖可方便地進行分類。因為聚類圖很像一張系統圖,所以這種方法就叫系統聚類法。系統聚類法是在實際中使用最多的一種方法,從上面的分析可以看出,雖然我們已給了計算樣品之間距離的方法,但在實際計算過程中還要定義類與類之間的距離。定義類與類之間的距離也有許多方法,不同的方法就產生了不同的系統聚類方法,常用的有如下六種:
(1)最短距離法:類與類之間的距離等於兩類最近樣品之間的距離;
(2)最長距離法:類與類之間的距離等於兩類最遠樣品之間的距離:
(3)類平均法:類與類之問的距離等於各類元素兩兩之間的平方距離的平均;
(4)重心法:類與類之間的距離定義為對應這兩類重心之間的距離對樣品分類來說,每一類的類重心就是該類樣品的均值;
(5)中間距離法:最長距離法誇大了類間距離,最短距離法低估了類間距離介於兩者問的距離法即為中間距離法,類與類之問的距離既不採用兩類之間最近距離。也不採用最遠距離,而是採用介於最遠和最近之間的距離;
(6)離差平方和法(Ward法):基於方差分析的思想,如果分類正確,同類樣品之間的離差平方和應當較小,類與類之間的離差平方和應當較大

㈡ 聚類分析中常見的數據類型有哪些

簡單地說,分類(Categorization or Classification)就是按照某種標准給對象貼標簽(label),再根據標簽來區分歸類.
簡單地說,聚類是指事先沒有「標簽」而通過某種成團分析找出事物之間存在聚集性原因的過程.

區別是,分類是事先定義好類別 ,類別數不變 .分類器需要由人工標注的分類訓練語料訓練得到,屬於有指導學習范疇.聚類則沒有事先預定的類別,類別數不確定. 聚類不需要人工標注和預先訓練分類器,類別在聚類過程中自動生成 .分類適合類別或分類體系已經確定的場合,比如按照國圖分類法分類圖書;聚類則適合不存在分類體系、類別數不確定的場合,一般作為某些應用的前端,比如多文檔文摘、搜索引擎結果後聚類(元搜索)等.
分類的目的是學會一個分類函數或分類模型(也常常稱作分類器 ),該模型能把資料庫中的數據項映射到給定類別中的某一個類中. 要構造分類器,需要有一個訓練樣本數據集作為輸入.訓練集由一組資料庫記錄或元組構成,每個元組是一個由有關欄位(又稱屬性或特徵)值組成的特徵向量,此外,訓練樣本還有一個類別標記.一個具體樣本的形式可表示為:(v1,v2,...,vn; c);其中vi表示欄位值,c表示類別.分類器的構造方法有統計方法、機器學習方法、神經網路方法等等.
聚類(clustering)是指根據「物以類聚」原理,將本身沒有類別的樣本聚集成不同的組,這樣的一組數據對象的集合叫做簇,並且對每一個這樣的簇進行描述的過程.它的目的是使得屬於同一個簇的樣本之間應該彼此相似,而不同簇的樣本應該足夠不相似.與分類規則不同,進行聚類前並不知道將要劃分成幾個組和什麼樣的組,也不知道根據哪些空間區分規則來定義組.其目的旨在發現空間實體的屬性間的函數關系,挖掘的知識用以屬性名為變數的數學方程來表示.聚類技術正在蓬勃發展,涉及范圍包括數據挖掘、統計學、機器學習、空間資料庫技術、生物學以及市場營銷等領域,聚類分析已經成為數據挖掘研究領域中一個非常活躍的研究課題.常見的聚類演算法包括:K-均值聚類演算法、K-中心點聚類演算法、CLARANS、 BIRCH、CLIQUE、DBSCAN等.

㈢ 常用的統計分析方法總結(聚類分析、主成分分析、因子分析)

1. 系統聚類法 :由N類--1類
2. 分解法 :由1類---N類
3. K-均值法 :事先在聚類過程中確定在K類,適用於數據量大的數據
4. 有序樣品的聚類 :N個樣品排序,次序相鄰的樣品聚成一類
5. 模糊聚類法 :模糊數學的方法,多用於定性變數
6. 加入法 :樣品依次加入,全部加入完得到聚類圖。

a.夾角餘弦
b.相關系數

a.常用的類間距離定義有8種之多,與之相應的 系統聚類法 也有8種,分別為
a. 中間距離法
b. 最短距離法 :類與類之間的距離最近兩個樣品的距離。
c. 最長距離法 :類與類之間的距離最遠兩個樣品的距離。【先距離最短,後距離最遠合並】
d. 類平均法 :兩類元素中任兩個樣品距離的平均。
e. 重心法 :兩個重心xp 和xq 的距離。
f. 可變類平均法
e. 離差平方和法(Ward法) : 該方法的基本思想來自於方差分析,如果分類正確,同 類樣品的離差平方和應當較小,類與類的離差平方和較大。 具體做法是先將 n 個樣品各自成一類,然後每次縮小一類,每 縮小一類,離差平方和就要增大,選擇使方差增加最小的兩 類合並,直到所有的樣品歸為一類為止。

a. 最短距離法的主要缺點是它有鏈接聚合的趨勢,容易形 成一個比較大的類,大部分樣品都被聚在一類中,所以最短 距離法的聚類效果並不好,實際中不提倡使用。
b. 最長距離法克服了最短距離法鏈接聚合的缺陷,兩類合 並以後與其他類的距離是原來兩個類中的距離最大者,加大 了合並後的類與其他類的距離。

a. 定義 :主成分分析(Principal Component Analysis,簡記 PCA)是將 多個指標化為少數幾個綜合指標的一種統計分析方法 ,通常我們把轉化成的綜合指標稱為主成分。

b. 本質:降維

c. 表達 :主成分為原始變數的線性組合
d. 即信息量在空間降維以後信息量沒有發生改變,所有主成分的方差之和與原始的方差之和

e. 多個變數之間有一定的相關性,利用原始變數 的線性組合形成幾個綜合指標(主成分),在保留原始變數主要信息的前提下起到降維與簡化問題的作用。

f. 累積貢獻率一般是 85% 以上

(1)每一個主成分都是各 原始變數的線性組合
(2)主成分的數目大大少於原始變數的數目
(3)主成分保留了原始變數絕大多數信息
(4)各主成分之間 互不相關

a. 基本目的:用 少數幾個綜合因子去描述多個隨機變數之間的相關關系
b. 定義:多個變數————少數綜合因子(不存在的因子)
c. 顯在變數:原始變數X;潛在變數:因子F
d. X=AF+e【公共因子+特殊因子】
e. 應用: 因子分析主要用於相關性很強的多指標數據的降維處理。
f. 通過研究原始變數相關矩陣內部 的依賴關系,把一些具有錯綜復雜關系的變數歸結為少數幾個綜合因子的一種多變數統計分析方法。
g. 定義:原始的變數是可觀測的顯在變數,而 綜合 的因子是 不可觀測 潛在變數 ,稱為因子。

i. 根據相關性大小把原始變數分組,使得同組內的變數之間相關性較高,而不同組的變數間的相關性則較低。
ii. 公共因子 :每組變數代表一個基本結構,並用一個不可觀測的綜合變數表示。
iii. 對於所研究的某一具體問題,原始變數分解成兩部分:

i. R 型因子分析——研究變數之間的相關關系
ii. Q 型因子分析——研究樣品之間的相關關系

a. 因子載荷 是第i個變數與第j個公共因子的相關系數,絕對值越大,相關的密切程度越高。

a. 變數 Xi 的共同度是因子載荷矩陣的第i行的元素的平方和。記為

b. 所有的公共因子與特殊因子對變數 Xi 的貢獻和為1。

a. 確定因子載荷
b. 因子旋轉
c. 計算因子得分

a. 尋找簡單結構的載荷矩陣:載荷矩陣A的所有元素都接 近0或±1,則模型的公共因子就易於解釋。
b. 如果各主因子的典型代表變數不突出,就需要進行旋轉使因子載荷矩陣中載荷的絕對值向0和1兩個方向分化。

a.意義:對公共因子作正交旋轉相當於對載荷矩陣 A 作一正交變換 ,右乘正交矩陣 T ,使 A* = AT 能有更鮮明的實際意義。
b.幾何意義:是在 m 維空間上對原因子軸作一剛性旋轉。 因子旋轉不改變公共因子的共同度,這是因為 A A '=ATT'A'=AA'
c. 旋轉方法有:正交旋轉和斜交旋轉
d. 最普遍的是: 最大方差旋轉法

a. 定義:通過坐標變換使各個因子載荷的方差之和最大。
b. 任何一個變數只在一個因子上有高貢獻率,而在 其它因子上的載荷幾乎為0;
c. 任何一個因子只在少數變數上有高載荷,而在其 它變數上的載荷幾乎為0。

思想相同: 降維
前提條件:各變數間必須有 相關性 ,否則各變數之間沒有共享信息

㈣ 在進行系統聚類分析時,不同的類間距離計算方法有何區別

聚類分析有兩種主要計算方法,分別是凝聚層次聚類(Agglomerative hierarchical method)和K均值聚類(K-Means)。
一、層次聚類
層次聚類又稱為系統聚類,首先要定義樣本之間的距離關系,距離較近的歸為一類,較遠的則屬於不同的類。可用於定義「距離」的統計量包括了歐氏距離 (euclidean)、馬氏距離(manhattan)、 兩項距離(binary)、明氏距離(minkowski)。還包括相關系數和夾角餘弦。
層次聚類首先將每個樣本單獨作為一類,然後將不同類之間距離最近的進行合並,合並後重新計算類間距離。這個過程一直持續到將所有樣本歸為一類為止。在計算類間距離時則有六種不同的方法,分別是最短距離法、最長距離法、類平均法、重心法、中間距離法、離差平方和法。
下面我們用iris數據集來進行聚類分析,在R語言中所用到的函數為hclust。首先提取iris數據中的4個數值變數,然後計算其歐氏距離矩陣。然後將矩陣繪制熱圖,從圖中可以看到顏色越深表示樣本間距離越近,大致上可以區分出三到四個區塊,其樣本之間比較接近。
data=iris[,-5]
dist.e=dist(data,method='euclidean')
heatmap(as.matrix(dist.e),labRow = F, labCol = F)
X
然後使用hclust函數建立聚類模型,結果存在model1變數中,其中ward參數是將類間距離計算方法設置為離差平方和法。使用plot(model1)可以繪制出聚類樹圖。如果我們希望將類別設為3類,可以使用cutree函數提取每個樣本所屬的類別。
model1=hclust(dist.e,method='ward')
result=cutree(model1,k=3) 為了顯示聚類的效果,我們可以結合多維標度和聚類的結果。先將數據用MDS進行降維,然後以不同的的形狀表示原本的分類,用不同的顏色來表示聚類的結果。可以看到setose品種聚類很成功,但有一些virginica品種的花被錯誤和virginica品種聚類到一起。

㈤ 聚類分析法

聚類分析,亦稱群分析或點分析,是研究多要素事物分類問題的數量方法。其基本原理是,根據樣本自身的屬性,用數學方法按照某些相似性或差異性指標,定量地確定樣本之間的親疏關系,並按親疏關系的程度對樣本進行聚類(徐建華,1994)。

聚類分析方法,應用在地下水中,是在各種指標和質量級別標准約束條件下,通過樣品的各項指標監測值綜合聚類,以判別地下水質量的級別。常見的聚類分析方法有系統聚類法、模糊聚類法和灰色聚類法等。

(一)系統聚類法

系統聚類法的主要步驟有:數據標准化、相似性統計量計算和聚類。

1.數據標准化

在聚類分析中,聚類要素的選擇是十分重要的,它直接影響分類結果的准確性和可靠性。在地下水質量研究中,被聚類的對象常常是多個要素構成的。不同要素的數據差異可能很大,這會對分類結果產生影響。因此當分類要素的對象確定之後,在進行聚類分析之前,首先對聚類要素進行數據標准化處理。

假設把所考慮的水質分析點(G)作為聚類對象(有m個),用i表示(i=1,2,…,m);把影響水質的主要因素作為聚類指標(有n個),用j表示(j=1,2,…,n),它們所對應的要素數據可用表4-3給出。在聚類分析中,聚類要素的數據標准化的方法較多,一般採用標准差法和極差法。

表4-3 聚類對象與要素數據

對於第j個變數進行標准化,就是將xij變換為x′ij

(1)總和標准化

區域地下水功能可持續性評價理論與方法研究

這種標准化方法所得的新數據x′ij滿足

區域地下水功能可持續性評價理論與方法研究

(2)標准差標准化

區域地下水功能可持續性評價理論與方法研究

式中:

由這種標准化方法所得的新數據x′ij,各要素的平均值為0,標准差為1,即有

區域地下水功能可持續性評價理論與方法研究

(3)極差標准化

區域地下水功能可持續性評價理論與方法研究

經過這種標准化所得的新數據,各要素的極大值為1,極小值為0,其餘的數值均在[0,1]閉區間內。

上述式中:xij為j變數實測值;xj為j變數的樣本平均值;sj為樣本標准差。

2.相似性統計量

系統聚類法要求給出一個能反映樣品間相似程度的一個數字指標,需要找到能量度相似關系的統計量,這是系統聚類法的關鍵。

相似性統計量一般使用距離系數和相似系數進行計算。距離系數是把樣品看成多維空間的點,用點間的距離來表示研究對象的緊密關系,距離越小,表明關系越密切。相似系數值表明樣本和變數間的相似程度。

(1)距離系數

常採用歐幾里得絕對距離,其中i樣品與j樣品距離dij

區域地下水功能可持續性評價理論與方法研究

dij越小,表示i,j樣品越相似。

(2)相似系數

常見的相似系數有夾角餘弦和相關系數,計算公式為

1)夾角餘弦

區域地下水功能可持續性評價理論與方法研究

在式(4-20)中:-1≤cosθij≤1。

2)相關系數

區域地下水功能可持續性評價理論與方法研究

式中:dij為i樣品與j樣品的歐幾里得距離;cosθij為i樣品與j樣品的相似系數;rij為i樣品與j樣品的相關系數;xik為i樣品第k個因子的實測值或標准化值;xjk為j樣品第k個因子的實測值或標准化值;

為i樣品第k個因子的均值,

為j樣品第k個因子的均值,

;n為樣品的數目;k為因子(變數)數。

3.聚類

在選定相似性統計量之後,根據計算結果構成距離或相似性系數矩陣(n×n),然後通過一定的方法把n個樣品組合成不同等級的分類單位,對類進行並類,即將最相似的樣品歸為一組,然後,把次相似的樣品歸為分類級別較高的組。聚類主要有直接聚類法、距離聚類法(最短距離聚類法、最遠距離聚類法)。

(1)直接聚類法

直接聚類法,是根據距離或相似系數矩陣的結構一次並類得到結果,是一種簡便的聚類方法。它首先把各個分類對象單獨視為一類,然後根據距離最小或相似系數最大的原則,依次選出一對分類對象,並成新類。如果一對分類對象正好屬於已歸的兩類,則把這兩類並為一類。每一次歸並,都劃去該對象所在的列與列序相同的行。經過n-1次把全部分類對象歸為一類,最後根據歸並的先後順序作出聚類分析譜系圖。

(2)距離聚類法

距離聚類法包括最短距離聚類法和最遠距離聚類法。最短距離聚類法具有空間壓縮性,而最遠距離聚類法具有空間擴張性。這兩種聚類方法關於類之間的距離計算可以用一個統一的公式表示:

區域地下水功能可持續性評價理論與方法研究

當γ=-0.5時,式(4-22)計算類之間的距離最短;當γ=0.5時,式(4-22)計算類之間的距離最遠。

最短、最遠距離法,是在原來的n×n距離矩陣的非對角元素中找出dpq=min(dij)或dpq=max(dij),把分類對象Gp和Gq歸並為一新類Gr,然後按計算公式:

dpq=min(dpk,dqk)(k≠ p,q) (4-23)

dpq=max(dpk,dqk)(k≠ p,q) (4-24)

計算原來各類與新類之間的距離,這樣就得到一個新的(n-1)階的距離矩陣;再從新的距離矩陣中選出最小或最大的dij,把Gi和Gj歸並成新類;再計算各類與新類的距離,直至各分類對象被歸為一類為止。最後綜合整個聚類過程,作出最短距離或最遠距離聚類譜系圖(圖4-1)。

圖4-1 地下水質量評價的聚類譜系圖

(二)模糊聚類法

模糊聚類法是普通聚類方法的一種拓展,它是在聚類方法中引入模糊概念形成的。該方法評價地下水質量的主要步驟,包括數據標准化、標定和聚類3個方面(付雁鵬等,1987)。

1.數據標准化

在進行聚類過程中,由於所研究的各個變數絕對值不一樣,所以直接使用原始數據進行計算就會突出絕對值大的變數,而降低絕對值小的變數作用,特別是在進行模糊聚類分析中,模糊運算要求必須將數據壓縮在[0,1]之間。因此,模糊聚類計算的首要工作是解決數據標准化問題。數據標准化的方法見系統聚類分析法。

2.標定與聚類

所謂標定就是計算出被分類對象間的相似系數rij,從而確定論域集U上的模糊相似關系Rij。相似系數的求取,與系統聚類分析法相同。

聚類就是在已建立的模糊關系矩陣Rij上,給出不同的置信水平λ(λ∈[0,1])進行截取,進而得到不同的分類。

聚類方法較多,主要有基於模糊等價關系基礎上的聚類與基於最大樹的聚類。

(1)模糊等價關系方法

所謂模糊等價關系,是指具有自反性(rii=1)、對稱性(rij=rji)與傳遞性(R·R⊆R)的模糊關系。

基於模糊等價關系的模糊聚類分析方法的基本思想是:由於模糊等價關系R是論域集U與自己的直積U×U上的一個模糊子集,因此可以對R進行分解,當用λ-水平對R作截集時,截得的U×U的普通子集Rλ就是U上的一個普通等價關系,也就是得到了關於U中被分類對象元素的一種。當λ由1下降到0時,所得的分類由細變粗,逐漸歸並,從而形成一個動態聚類譜系圖(徐建華,1994)。此類分析方法的具體步驟如下。

第一步:模糊相似關系的建立,即計算各分類對象之間相似性統計量。

第二步:將模糊相似關系R改造為模糊等價關系R′。模糊等價關系要求滿足自反性、對稱性與傳遞性。一般而言,模糊相似關系滿足自反性和對稱性,但不滿足傳遞性。因此,需要採用傳遞閉合的性質將模糊相似關系改造為模糊等價關系。改造的方法是將相似關系R自乘,即

R2=R·R

R4=R2·R2

這樣計算下去,直到:R2k=Rk·Rk=Rk,則R′=Rk便是一個模糊等價關系。

第三步:在不同的截集水平下進行聚類。

(2)最大樹聚類方法

基於最大樹的模糊聚類分析方法的基本思路是:最大樹是一個不包含迴路的連通圖(圖4-2);選取λ水平對樹枝進行截取,砍去權重低於λ 的枝,形成幾個孤立的子樹,每一棵子樹就是一個類的集合。此類分析方法的具體步驟如下。

圖4-2 最大聚類支撐樹圖

第一步:計算分類對象之間的模糊相似性統計量rij,構建最大樹。

以所有被分類的對象為頂點,當兩點間rij不等於0時,兩點間可以用樹干連接,這種連接是按rij從大到小的順序依次進行的,從而構成最大樹。

第二步:由最大樹進行聚類分析。

選擇某一λ值作截集,將樹中小於λ值的樹干砍斷,使相連的結點構成一類,即子樹,當λ由1到0時,所得到的分類由細變粗,各結點所代表的分類對象逐漸歸並,從而形成一個動態聚類譜系圖。

在聚類方法中,模糊聚類法比普通聚類法有較大的突破,簡化了運算過程,使聚類法更易於掌握。

(三)灰色聚類法

灰色聚類是根據不同聚類指標所擁有的白化數,按幾個灰類將聚類對象進行歸納,以判斷該聚類對象屬於哪一類。

灰色聚類應用於地下水水質評價中,是把所考慮的水質分析點作為聚類對象,用i表示(i=1,2,…,n);把影響水質的主要因素作為聚類指標,用j表示(j=1,2,…,m),把水質級別作為聚類灰數(灰類),用k表示(k=1,2,3)即一級、二級、三級3個灰類(羅定貴等,1995)。

灰色聚類的主要步驟:確定聚類白化數、確定各灰色白化函數fjk、求標定聚類權重ηjk、求聚類系數和按最大原則確定聚類對象分類。

1.確定聚類白化數

當各灰類白化數在數量上相差懸殊時,為保證各指標間的可比性與等效性,必須進行白化數的無量綱化處理。即給出第i個聚類對象中第j個聚類指標所擁有的白化數,i=1,2,…,n;j=1,2,…,m。

2.確定各灰色白化函數

建立滿足各指標、級別區間為最大白化函數值(等於1),偏離此區間愈遠,白化函數愈小(趨於0)的功效函數fij(x)。根據監測值Cki,可在圖上(圖4-3)解析出相應的白化函數值fjk(Cik),j=1,2,…,m;k=1,2,3。

3.求標定聚類權重

根據式(4-25),計算得出聚類權重ηjk的矩陣(n×m)。

區域地下水功能可持續性評價理論與方法研究

式中:ηjk為第j個指標對第k個灰類的權重;λjk為白化函數的閾值(根據標准濃度而定)。

圖4-3 白化函數圖

註:圖4-3白化函數f(x)∈[0,1],具有下述特點:①平頂部分,表示該量的最佳程度。這部分的值為最佳值,即系數(權)為1,f(x)=max=1(峰值),x∈[x2,x3]。②白化函數是單調變化的,左邊部分f(x)=L(x),單調增,x∈(x1,x2],稱為白化的左支函數;右邊部分f(x)=R(x),單調減,x∈[x3,x4),稱為白化的右支函數。③白化函數左右支函數對稱。④白化函數,為了簡便,一般是直線。⑤白化函數的起點和終點,一般來說是人為憑經驗確定。

4.求聚類系數

σik=∑fjk(dij)ηjk (4-26)

式中:σik為第i個聚類對象屬於第k個灰類的系數,i=1,2,…,n;k=1,2,3。

5.按最大原則確定聚類對象分類

由σik構造聚類向量矩陣,行向量最大者,確定k樣品屬於j級對應的級別。

用灰色聚類方法進行地下水水質評價,能最大限度地避免因人為因素而造成的「失真、失效」現象。

聚類方法計算相對復雜,但是計算結果與地下水質量標准級別對應性明顯,能夠較全面反映地下水質量狀況,也是較高層次定量研究地下水質量的重要方法。

㈥ 聚類演算法有哪幾種

聚類分析計算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基於密度的方法(density-based method)、基於網格的方法(grid-based method)、基於模型的方法(model-based method)等。其中,前兩種演算法是利用統計學定義的距離進行度量。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。
其流程如下:
(1)從 n個數據對象任意選擇 k 個對象作為初始聚類中心;
(2)根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;並根據最小距離重新對相應對象進行劃分;
(3)重新計算每個(有變化)聚類的均值(中心對象);
(4)循環(2)、(3)直到每個聚類不再發生變化為止(標准測量函數收斂)。
優點: 本演算法確定的K個劃分到達平方誤差最小。當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,計算的復雜度為 O(NKt),其中N是數據對象的數目,t是迭代的次數。
缺點:
1. K 是事先給定的,但非常難以選定;
2. 初始聚類中心的選擇對聚類結果有較大的影響。

㈦ SPSS聚類分析 系統聚類分析

SPSS聚類分析:系統聚類分析
一、概念:(分析-分類-系統聚類)
系統聚類法常稱為層次聚類法、分層聚類法,也是聚類分析中使用廣泛的一種方法。它有兩種類型,一是對研究對象本身進行分類,稱為Q型聚類;另一是對研究對象的觀察指標進行分類,稱為R型聚類。同時根據聚類過程不同,又分為分解法和凝聚法。
二、聚類方法(分析-分類-系統聚類-方法)
1、聚類方法。可用的選項有組間聯接、組內聯接、最近鄰元素、最遠鄰元素、質心聚類法、中位數聚類法和Ward法。◎Between-groupslinkage:組間平均距離法。系統默認選項。合並兩類的結果使所有的兩類的平均距離最小。◎Within-groups linkage:組內平均距離法。當兩類合並為一類後,合並後的類中的所有項之間的平均距離最小。◎Nearestneighbor:最近距離法。採用兩類間最近點間的距離代表兩 類間的距離。◎Furthest Neighbor:最遠距離法。用兩類之間最遠點的距離代表兩類之間的距離。◎Centroidclustering:重心法。定義類與類之間的距離為兩類中各 樣品的重心之間的距離。◎Medianclustering:中位數法。定義類與類之間的距離為兩類中各 樣品的中位數之間的距離。◎Ward』s method:最小離差平方和法。聚類中使類內各樣品的離差平方和最小,類間的離差平方和盡可能大。
2、度量。允許您指定聚類中使用的距離或相似性測量。選擇數據類型以及合適的距離或相似性測量:◎Euclideandistance:歐氏距離。◎SquaredEuclideandistance:歐氏距離平方。兩項之間的距離是每個變數值之差的平方和。系統默認項。◎Cosline:餘弦相似性測度,計算兩個向量間夾角的餘弦。◎Pearsonconelation:皮爾遜相關系數。它是線性關系的測度,范圍是-1~+1。◎Chebychev:切比雪夫距離。◎Block:曼哈頓(Manhattan)距離,兩項之間的距離是每個變數值之差的絕對值總和。◎Minkowski:閔科夫斯基距離。◎Customized:自定義距離。
2.1、區間。可用的選項有Euclidean距離、平方Euclidean距離、餘弦、Pearson相關性、Chebychev、塊、Minkowski及定製。
2.2、計數。可用的選項有卡方測量和phi平方測量。
2.3、二分類。可用的選項有Euclidean距離、平方Euclidean距離、尺度差分、模式差分、方差、離差、形狀、簡單匹配、Phi 4點相關性、lambda、Anderberg的D、骰子、Hamann、Jaccard、Kulczynski 1、Kulczynski 2、Lance和Williams、Ochiai、Rogers和Tanimoto、Russel和Rao、Sokal和Sneath 1、Sokal和Sneath 2、Sokal和Sneath3、Sokal和Sneath 4、Sokal和Sneath 5、Yule的Y以及Yule的Q。
3、轉換值。允許您在計算近似值之前為個案或值進行數據值標准化(對二分類數據不可用)。可用的標准化方法有z得分、范圍1至1、范圍0至1、1的最大量級、1的均值和使標准差為1。
4、轉換度量。允許您轉換距離測量所生成的值。在計算了距離測量之後應用這些轉換。可用的選項有絕對值、更改符號和重新調整到0–1范圍。
三、統計量(分析-分類-系統聚類-統計量)
1、合並進程表。顯示在每個階段合並的個案或聚類、所合並的個案或聚類之間的距離以及個案(或變數)與聚類相聯結時所在的最後一個聚類級別。
2、相似性矩陣。給出各項之間的距離或相似性。
3、聚類成員。顯示在合並聚類的一個或多個階段中,每個個案被分配所屬的聚類。可用的選項有單個解和一定范圍的解。

閱讀全文

與系統聚類分析方法六種相關的資料

熱點內容
怎麼填充淚溝好的方法 瀏覽:190
卷腹控柱力鍛煉方法 瀏覽:96
幼兒情境游戲的研究方法 瀏覽:656
子宮卵巢扭轉鍛煉方法 瀏覽:161
大led屏安裝方法 瀏覽:173
discreet使用方法 瀏覽:927
圈椅茶幾的安裝方法 瀏覽:21
看視頻的技巧和方法 瀏覽:141
腰椎體側彎鍛煉方法 瀏覽:555
tlc法檢查有雜質還有哪些方法 瀏覽:502
檢測癲癇病的最快方法 瀏覽:719
如何減肥變瘦的方法 瀏覽:24
內置液位儀測量方法 瀏覽:85
快速富裕的方法 瀏覽:848
恆聯豆漿機拆掉安裝方法 瀏覽:938
創傷止血常用止血方法視頻 瀏覽:513
券商復盤方法和技巧 瀏覽:245
如何在高一學會數學方法 瀏覽:571
懷孕胖怎麼減肥方法 瀏覽:423
炸制豬耳朵片的製作方法視頻 瀏覽:408