運動生物力學運動生物力學
biomechanics
應用力學原理和方法研究生物體的外在機械運動的生物力學分支。狹義的運動生物力學研究體育運動中人體的運動規律。按照力學觀點,人體或一般生物體的運動是神經系統、肌肉系統和骨骼系統協同工作的結果。神經系統控制肌肉系統,產生對骨骼系統的作用力以完成各種機械動作。運動生物力學的任務是研究人體或一般生物體在外界力和內部受控的肌力作用下的機械運動規律,它不討論神經、肌肉和骨骼系統的內部機制,後者屬於神經生理學、軟組織力學和骨力學的研究范疇(生物固體力學)。在運動生物力學中,神經系統的控制和反饋過程以簡明的控制規律代替 , 肌肉活動簡化為受控的力矩發生器,作為研究對象的人體模型可忽略肌肉變形對質量分布的影響,簡化為由多個剛性環節組成的多剛體系統。相鄰環節之間以關節相連接,在受控的肌力作用下產生圍繞關節的相對轉動,並影響系統的整體運動。
對於人體運動的研究最早可追溯到15世紀達·芬奇在力學和解剖學基礎上對人體運動器官的形態和機能的解釋。18世紀已出現對貓在空中轉體現象的實驗和理論研究。運動生物力學作為一門學科是20世紀60年代在體育運動、計算技術和實驗技術蓬勃發展的推動下形成的。70年代中H.哈茲將人體的神經-肌肉-骨骼大系統作為研究對象,利用復雜的數學模型進行數值計算,以解釋最基本的實驗現象。T.R.凱恩將描述人體運動的坐標區分為內變數和外變數,前者描述肢體的相對運動,為可控變數;後者描述人體的整體運動,由動力學方程確定。這種簡化的研究方法有可能將力學原理直接用於人體實際運動的模擬和理論分析。由於生物體存在個體之間的差異性,實驗研究在運動生物力學中佔有特殊重要地位。實驗運動生物力學利用高速攝影和計算機解析、光電計時器、加速度計、關節角變化、肌電儀和測力台等工具量測人體運動過程中各環節的運動學參數以及外力和內力的變化規律。
在實踐中,運動生物力學主要用於確定各專項體育運動的技術原理,作為運動員的技術診斷和改進訓練方法的理論依據。此外,運動生物力學在運動創傷的防治,運動和康復器械的改進,仿生機械如步行機器人的設計等方面也有重要作用。同時還為運動員選材提供了依據.
2. 有哪些常見的實驗方法
1 控制變數法:這個應該是最常見的實驗方法。
例如,在「探究壓強與哪些因素有關」、「探究電流與電阻的關系」、「研究弦樂器的音調與弦的松緊、長短和粗細的關系」等實驗中都用到了該實驗方法。
2 類比法:例如,在學習電流時,為了更好地理解,與生活中熟悉的水流作類比。
實驗+推理法:有些理論只有在理想空間里才能通過實驗得出,此時,我們可以在現實條件實驗的基礎上推導出來這些理論。
例如,在初二我們學過牛頓第一定律:一切物體在沒有受到力的作用時,總保持靜止狀態或勻速直線運動狀態。我們知道,物體在運動過程中必定會受到阻力作用,但是我們通過多次實驗,可以推出這一結論。
3 描述法:例如,在生活中是不存在光線的,我們為了更好地學習光,才引進了「光線」這一詞。
4 轉換法:例如,我們在學習「聲音是振動產生的」這一知識時,我們把音叉的微小簡答振動轉換為乒乓球的擺動。使實驗現象更為明顯。
5 模型法:我們在學習原子結構時,為了更好地認識原子的內部結構,用太陽系模型代表原子結構。
(2)運動分析的方法有實驗法擴展閱讀:
物理實驗是初高中階段物理課程中包含的相關實驗,包括電學實驗、力學實驗、熱學實驗、光學實驗等等,常用於驗證物理學科的定理定律。
實驗物理是相對於理論物理而言,理論物理是從理論上探索自然界未知的物質結構、相互作用和物質運動的基本規律的學科。
理論物理的研究領域涉及粒子物理與原子核物理、統計物理、凝聚態物理、宇宙學等,幾乎包括物理學所有分支的基本理論問題。而實驗物理主要是從實驗上來探索物質世界和自然規律。
實驗室使用守則
1、為保護實驗儀器和保持環境衛生,學生必須脫鞋進入實驗室。
2、實驗室是全校師生進行實驗教學和科研活動的場所,學生進入實驗室後要保持肅靜,遵守紀律。
3、做實驗前,認真聽教師講解實驗目的、步驟、儀器的性能操作、方法和注意事項,認真檢查所需儀器設備是否完知世好齊全,如有缺損要及時向教師報告。
4、實驗時要遵守操作規程,按照實驗步驟認真操作。
5、實驗時要注意安全,防止意外發生。
6、愛護實驗室儀器設備。
7、實驗完畢要認真清理儀器設備,關閉水源電源。
性質
1.真理性:物理學的理論和實驗揭示了自然界的奧秘,反映出物質運動的客觀規律。
2.和諧統一性:神秘的太空中天體的運動,在開普勒三定律的描繪下,顯出多麼的和諧有序。物理學上的幾次大統一,也顯示出美的感覺。牛頓用三大定律和萬有引力定律把天上和地上所有宏觀物體統一了。
麥克斯韋電磁理論的建立,又使電和磁實現了統一。愛因斯坦質能方程又把質量和能量建立了統一。光的波粒二象性理論把粒子性、波動攔猛慧性實現了統一。愛因斯坦的相對論又把時間、空間統一了。
3.簡潔性:物理規律的數學語言,體現了物理的簡潔明快性。如:牛頓第二定律,愛因斯坦的質能方程,法拉第電磁感應定律。
4.對稱性:對稱一般指物體形狀的對稱性,深層次的對稱表現為事物發展變化或客觀規律的對稱性。如:物理學中各種晶體的空間點陣結構具有高度的對稱性。豎直上拋運動、簡諧運動、波動鏡像對稱、磁電對稱、作用力與反作用力對稱、正粒子和反粒子、正物質和反物質、正電和負電等。
5.預測性:正確的物理理論,不僅能解釋當時已發現的物理現象,更能預測當時無法探測到的物理現象。例如麥克斯韋電磁理論預測電磁波存在,盧瑟福預言中子的存在,菲涅爾的衍射理論預言圓盤衍射中央有泊松亮斑,狄拉克預言電子的存在。
6.精巧性:物理實驗具有精巧性,設計方法的巧妙,使得物理現象更加明顯。