導航:首頁 > 研究方法 > 回歸分析方法

回歸分析方法

發布時間:2022-02-02 09:41:50

① 回歸分析法的分類

回歸分析中,當研究的因果關系只涉及因變數和一個自變數時,叫做一元回歸分析;當研究的因果關系涉及因變數和兩個或兩個以上自變數時,叫做多元回歸分析。此外,回歸分析中,又依據描述自變數與因變數之間因果關系的函數表達式是線性的還是非線性的,分為線性回歸分析和非線性回歸分析。回歸分析法預測是利用回歸分析方法,根據一個或一組自變數的變動情況預測與其有相關關系的某隨機變數的未來值。進行回歸分析需要建立描述變數間相關關系的回歸方程。根據自變數的個數,可以是一元回歸,也可以是多元回歸。根據所研究問題的性質,可以是線性回歸,也可以是非線性回歸。非線性回歸方程一般可以通過數學方法為線性回歸方程進行處理。

② 回歸分析法

回歸分析法,是在研究礦坑涌水量與其影響因素存在一定相關關系後,提出的一種數理統計方法。礦坑涌水量是在各種自然和人為因素綜合作用下有規律地變化著。影響礦坑涌水量變化的因素極其復雜繁多,甚至有些因素我們目前還沒有發現,有些因素雖被發現但也無力調控和測定。因此,大量事實告訴我們,礦坑涌水量(稱為因變數)與某些影響因素(稱為自變數)的關系也存在數學中稱之為相關的關系。回歸分析法就是利用數學統計的方法,找出礦坑涌水量與影響因素之間的相關關系的數學表達式——回歸方程,用求得的回歸方程來預測礦坑涌水量。

回歸分析法與水文地質比擬法的原理基本相同,都是尋求礦坑涌水量與其主要影響因素之間的關系表達式,並以這種尋找到的數學關系式來預測新的礦坑涌水量。所不同的是數學表達式的來源不同。水文地質比擬法,多數是根據經驗提出,用起來方便靈活,缺點是缺乏嚴密性;回歸分析法,是以已經有的實測數據為基礎,通過數理統計的方法建立回歸方程,其優點是可靠性較水文地質比擬法大一些,但計算較復雜。

應該注意的是,回歸方程是一種非確定性的變數關系,嚴格地講,它不允許外推。但具體工作中往往又需要外推,因此,回歸方程外推的范圍不宜過大。當回歸方程為直線時,外推深度一般不應超過試驗降深的1.5~1.75倍;當回歸方程為曲線相關時,雖可適當增大外推范圍,但一般也不宜超過2倍。同時,必須根據礦床具體的水文地質條件,檢驗外推結果是否合理。

幾種常用的回歸方程如下:

(一)二元直線相關

當礦坑涌水量與主要影響因素之間為直線相關關系時,其數學表達式為

Q=a+bs (4-5)

式中:Q為試驗時的涌水量;S為當抽水量為Q時相對應的水位降深;a為常數;b為回歸系數,它表示當S每增加1m時涌水量平均增加的水量數值。

a,b可根據試驗數據利用最小二乘法求得

雙層水位礦床地下水深層局部疏干方法的理論與實踐

式中:

為試驗時各次涌水量的算術平均值,即

為試驗時各次降深的算術平均值,即

;n為試驗觀測次數。

根據求得的a,b系數值,便可寫出回歸方程。

(二)三元直線相關

如果礦坑涌水量與兩個影響因素存在直線相關時,其數學表達式便為三元直線相關(比如降深S和時間t):

Q=b0+b1S+b2t (4-8)

式中:b0為常數;b1,b2分別為水量Q對自變數S和t的回歸系數;S,t為當礦坑涌水量為Q時的兩個因素自變數;b0,b1,b2可用最小二乘法確定;

雙層水位礦床地下水深層局部疏干方法的理論與實踐

根據求得的b0,b1,b2可以寫出三元直線方程。

(三)涌水量-降深曲線法(Q-S曲線法)

涌水量-降深曲線法也稱涌水量曲線法,其實質就是利用抽(放)水的試驗資料,建立涌水量(Q)和降深(S)之間的關系曲線方程,根據試驗階段和未來開采階段水文地質條件的相似性,合理地把Q-S曲線外推,來預測礦坑涌水量。

大量試驗資料證明,涌水量曲線一般有4種類型(圖4-1)。

圖4-1 涌水量-降深曲線圖

(1)直線型

Q=bs

式中:

這種類型的曲線方程,一般表現為地下水流呈層流狀態,抽水時水位降深與含水層厚度相比很小。

(2)拋物線型

S=aQ+bQ2 (4-11)

雙層水位礦床地下水深層局部疏干方法的理論與實踐

(3)冪函數曲線型

雙層水位礦床地下水深層局部疏干方法的理論與實踐

(4)對數曲線型

Q=a+blgS (4-17)

式中:

雙層水位礦床地下水深層局部疏干方法的理論與實踐

上述各式中a,b均為待定系數,求出a,b後便可寫出涌水量曲線方程。

一般情況下,圖4-1中的2號曲線代表的是拋物線型曲線,它表示強富水性含水層在抽水強烈時,地下水抽水井附近出現三維流的情況下的曲線形態;第3,4兩種類型曲線一般表示含水層規模較小,補給條件比較差情況下出現的曲線類型。

涌水量曲線方程的形態不但與含水層的規模、性質以及補給徑流條件有關,而且與抽水強度的大小和抽水時間長短也有關系。因此,採用Q-S曲線方程法預測礦坑涌水量時,一般要求抽(放)水試驗的規模盡量大一些,常採取大口徑、大降深群孔抽(放)水試驗,以求盡量符合未來的開采狀態,充分揭露和顯示其盡量多的水文地質條件,盡量波及礦床的各種邊界,從而求取最大可能符合實際條件的礦坑涌水量。

什麼是回歸分析法

回歸分析(英語:Regression Analysis)是一種統計學上分析數據的方法,目的在於了解兩個或多個變數間是否相關、相關方向與強度,並建立數學模型以便觀察特定變數來預測研究者感興趣的變數。

回歸分析中,當研究的因果關系只涉及因變數和一個自變數時,叫做一元回歸分析;當研究的因果關系涉及因變數和兩個或兩個以上自變數時,叫做多元回歸分析。此外,回歸分析中,又依據描述自變數與因變數之間因果關系的函數表達式是線性的還是非線性的,分為線性回歸分析和非線性回歸分析。回歸分析法預測是利用回歸分析方法,根據一個或一組自變數的變動情況預測與其有相關關系的某隨機變數的未來值。進行回歸分析需要建立描述變數間相關關系的回歸方程。根據自變數的個數,可以是一元回歸,也可以是多元回歸。根據所研究問題的性質,可以是線性回歸,也可以是非線性回歸。非線性回歸方程一般可以通過數學方法為線性回歸方程進行處理。

④ 回歸分析法計算公式是什麼

相關計算公式為:a=[∑Xi2∑Yi-∑Xi∑XiYi]/[n∑Xi2-(∑Xi)2],b=[n∑XiYi-∑Xi∑Yi]/[n∑Xi2-(∑Xi)2]。

回歸直線法是根據若干期業務量和資金佔用的歷史資料,運用最小平方法原理計算不變資金和單位產銷量所需變動資金的一種資金習性分析方法。

回歸分析法主要解決的問題:

1、確定變數之間是否存在相關關系,若存在,則找出數學表達式。

2、根據一個或幾個變數的值,預測或控制另一個或幾個變數的值,且要估計這種控制或預測可以達到何種精確度。

⑤ 回歸分析方法

§3.2 回歸分析方法
回歸分析方法,是研究要素之間具體的數量關系的一種強有力的工具,能夠建立反映地理要素之間具體的數量關系的數學模型,即回歸模型。
1. 一元線性回歸模型
1) 一元線性回歸模型的基本結構形式
假設有兩個地理要素(變數)x和y,x為自變數,y為因變數。則一元線性回歸模型的基本結構形式:

a和b為待定參數;α=1,2,…,n為各組觀測數據的下標; εa為隨機變數。如果記a^和b^ 分別為參數a與b的擬合值,則得到一元線性回歸模型

ÿ 是y 的估計值,亦稱回歸值。回歸直線——代表x與y之間相關關系的擬合直線

2) 參數a、b的最小二ÿ乘估計
參數a與b的擬合值:

,

建立一元線性回歸模型的過程,就是用變數 和 的實際觀測數據確定參數a和b的最小二乘估計值α^和β^ 的過程。
3) 一元線性回歸模型的顯著性檢驗
線性回歸方程的顯著性檢驗是藉助於F檢驗來完成的。
檢驗統計量F:

誤差平方和:

回歸平方和:

F≈F(1,n-2)。在顯著水平a下,若 ,則認為回歸方程效果在此水平下顯著;當 時,則認為方程效果不明顯。

[舉例說明]
例1:在表3.1.1中,將國內生產總值(x1)看作因變數y,將農業總產值(x2)看作自變數x,試建立它們之間的一元線性回歸模型並對其進行顯著性檢驗。
解:
(1) 回歸模型
將y和x的樣本數據代入參數a與b的擬合公式,計算得:

故,國內生產總值與農業總產值之間的回歸方程為

(2) 顯著性檢驗

在置信水平α=0.01下查F分布表得:F0.01(1,46)=7.22。由於F=4951.098 >> F0.01(1,46)=7.22,所以回歸方程(3.2.7)式在置信水平a=0.01下是顯著的。

2. 多元線性回歸模型
在多要素的地理系統中,多個(多於兩個)要素之間也存在著相關影響、相互關聯的情況。因此,多元地理回歸模型更帶有普遍性的意義。
1) 多元線性回歸模型的建立
(1) 多元線性回歸模型的結構形式
假設某一因變數y受k 個自變數 的影響,其n組觀測值為 。則多元線性回歸模型的結構形式:

為待定參數, 為隨機變數。如果 分別為 的擬合值,則回歸方程為

b0為常數, 稱為偏回歸系數。
偏回歸系數 ——當其它自變數都固定時,自變數 每變化一個單位而使因變數xi平均改變的數值。

(2) 求解偏回歸系數

,

2) 多元線性回歸模型的顯著性檢驗
用F檢驗法。
F統計量:

當統計量F計算出來之後,就可以查F分布表對模型進行顯著性檢驗。
[舉例說明]
例2:某地區各城市的公共交通營運總額(y)與城市人口總數(x1 )以及工農業總產值(x2)的年平均統計數據如表3.2.1(點擊展開顯示該表)所示。試建立y與x1及x2之間的線性回歸模型並對其進行顯著性檢驗。

表3.2.1 某地區城市公共交通營運額、人口數及工農業總產值的年平均數據

城市序號

公共交通營運額y/103人公里 人口數x1/103人 工農業總產值x2
/107元
1 6825.99 1298.00 437.26
2 512.00 119.80 1286.48
... ... ... ...
14 192.00 12.47 1072.27
註:本表數據詳見書本P54。
解:
(1) 計算線性回歸模型
由表3.2.1中的數據,有

計算可得:

故y與x1 及y2之間的線性回歸方程

(2) 顯著性檢驗

故:

在置信水平a=0.01下查F分布表知:F0.01(2,11)=7.21。由於F=38.722> F0.01(2,11)=7.21,所以在置信水平a=0.01下,回歸方程式是顯著的。

3. 非線性回歸模型的建立方法
1) 非線性關系的線性化
(1) 非線性關系模型的線性化
對於要素之間的非線性關系通過變數替換就可以將原來的非線性關系轉化為新變數下的線性關系。
[幾種非線性關系模型的線性化]

① 於指數曲線 ,令 , ,將其轉化為直線形式:
,其中, ;
② 對於對數曲線 ,令 , ,將其轉化為直線形式:

③ 對於冪函數曲線 ,令 , ,將其轉化為直線形式:
,其中,
④ 對於雙曲線 ,令 ,將其轉化為直線形式:

⑤ 對於S型曲線 ,將其轉化為直線形式:


⑥ 對於冪函數乘積:

令 將其轉化為直線形式:

其中, ;
⑦ 對於對數函數和:

令 ,將其化為線性形式:

(2) 建立非線性回歸模型的一般方法
① 通過適當的變數替換將非線性關系線性化;
② 用線性回歸分析方法建立新變數下的線性回歸模型:
③ 通過新變數之間的線性相關關系反映原來變數之間的非線性相關關系。
3) 非線性回歸模型建立的實例

非線性回歸模型建立的實例

景觀是地理學的重要研究內容之一。有關研究表明(Li,2000;徐建華等,2001),任何一種景觀類型的斑塊,其面積(Area)與周長(Perimeter)之間的數量關系可以用雙對數曲線來描述,即

例3:表3.2.2給出了某地區林地景觀斑塊面積(Area)與周長(Perimeter)的數據。試建立林地景觀斑塊面積A與周長P之間的雙對數相關關系模型。

表3.2.2某地區各個林地景觀斑塊面積(m2)與周長(m)

序號 面積A 周長P 序號 面積A 周長P
1 10447.370 625.392 42 232844.300 4282.043
2 15974.730 612.286 43 4054.660 289.307
... ... ... ... ... ...
41 1608.625 225.842 82 564370.800 12212.410

註:本表數據詳見書本57和58頁。

解:因為林地景觀斑塊面積(A)與周長(P)之間的數量關系是雙對數曲線形式,即

所以對表3.2.2中的原始數據進行對數變換,變換後得到的各新變數對應的觀測數據如表3.2.3所示。

⑥ 回歸分析的內容和步驟是什麼

1、確定變數:

明確定義了預測的具體目標,並確定了因變數。 如果預測目標是下一年的銷售量,則銷售量Y是因變數。 通過市場調查和數據訪問,找出與預測目標相關的相關影響因素,即自變數,並選擇主要影響因素。

2、建立預測模型:

依據自變數和因變數的歷史統計資料進行計算,在此基礎上建立回歸分析方程,即回歸分析預測模型。

3、進行相關分析:

回歸分析是因果因素(自變數)和預測因子(因變數)的數學統計分析。 只有當自變數和因變數之間存在某種關系時,建立的回歸方程才有意義。 因此,作為自變數的因子是否與作為因變數的預測對象相關,程度的相關程度以及判斷相關程度的程度是在回歸分析中必須解決的問題。 相關分析通常需要相關性,並且相關度系數用於判斷自變數和因變數之間的相關程度。

4、計算預測誤差:

回歸預測模型是否可用於實際預測取決於回歸預測模型的測試和預測誤差的計算。 回歸方程只能通過回歸方程作為預測模型來預測,只有當它通過各種測試且預測誤差很小時才能預測。

5、確定預測值:

利用回歸預測模型計算預測值,並對預測值進行綜合分析,確定最後的預測值。

(6)回歸分析方法擴展閱讀:

回歸分析的應用:

1、相關分析研究的是現象之間是否相關、相關的方向和密切程度,一般不區別自變數或因變數。而回歸分析則要分析現象之間相關的具體形式,確定其因果關系,並用數學模型來表現其具體關系。比如說,從相關分析中我們可以得知「質量」和「用戶滿意度」變數密切相關,但是這兩個變數之間到底是哪個變數受哪個變數的影響,影響程度如何,則需要通過回歸分析方法來確定。

2、一般來說,回歸分析是通過規定因變數和自變數來確定變數之間的因果關系,建立回歸模型,並根據實測數據來求解模型的各個參數,然後評價回歸模型是否能夠很好的擬合實測數據;如果能夠很好的擬合,則可以根據自變數作進一步預測。

⑦ 什麼是回歸分析主要內容是什麼

在統計學中,回歸分析(regression analysis)指的是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析按照涉及的變數的多少,分為一元回歸和多元回歸分析;按照因變數的多少,可分為簡單回歸分析和多重回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
拓展資料
在大數據分析中,回歸分析是一種預測性的建模技術,它研究的是因變數(目標)和自變數(預測器)之間的關系。這種技術通常用於預測分析,時間序列模型以及發現變數之間的因果關系。例如,司機的魯莽駕駛與道路交通事故數量之間的關系,最好的研究方法就是回歸。
方法
有各種各樣的回歸技術用於預測。這些技術主要有三個度量(自變數的個數,因變數的類型以及回歸線的形狀)。
1. Linear Regression線性回歸
它是最為人熟知的建模技術之一。線性回歸通常是人們在學習預測模型時首選的技術之一。在這種技術中,因變數是連續的,自變數可以是連續的也可以是離散的,回歸線的性質是線性的。
線性回歸使用最佳的擬合直線(也就是回歸線)在因變數(Y)和一個或多個自變數(X)之間建立一種關系。
多元線性回歸可表示為Y=a+b1*X +b2*X2+ e,其中a表示截距,b表示直線的斜率,e是誤差項。多元線性回歸可以根據給定的預測變數(s)來預測目標變數的值。
2.Logistic Regression邏輯回歸
邏輯回歸是用來計算「事件=Success」和「事件=Failure」的概率。當因變數的類型屬於二元(1 / 0,真/假,是/否)變數時,應該使用邏輯回歸。這里,Y的值為0或1,它可以用下方程表示。
odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence
ln(odds) = ln(p/(1-p))
logit(p) = ln(p/(1-p)) =b0+b1X1+b2X2+b3X3....+bkXk
上述式子中,p表述具有某個特徵的概率。你應該會問這樣一個問題:「為什麼要在公式中使用對數log呢?」。
因為在這里使用的是的二項分布(因變數),需要選擇一個對於這個分布最佳的連結函數。它就是Logit函數。在上述方程中,通過觀測樣本的極大似然估計值來選擇參數,而不是最小化平方和誤差(如在普通回歸使用的)。
3. Polynomial Regression多項式回歸
對於一個回歸方程,如果自變數的指數大於1,那麼它就是多項式回歸方程。如下方程所示:
y=a+b*x^2
在這種回歸技術中,最佳擬合線不是直線。而是一個用於擬合數據點的曲線。
4. Stepwise Regression逐步回歸
在處理多個自變數時,可以使用這種形式的回歸。在這種技術中,自變數的選擇是在一個自動的過程中完成的,其中包括非人為操作。

⑧ 如何確定應該使用哪種回歸分析方法

回歸有很多種,回歸研究X對於Y的影響,至於回歸方法的選擇上,關鍵在於因變數Y的數據類型,如果Y是離散數據,則統一應該使用logistic回歸,但具體logistic回歸又分成三種類型。

⑨ 回歸分析的種類



閱讀全文

與回歸分析方法相關的資料

熱點內容
出錯率10秒解決方法 瀏覽:832
拿錢愛心最簡單的方法怎麼疊 瀏覽:984
萬用表焊接調試問題解決方法 瀏覽:351
磚牆砌磚方法有圖片 瀏覽:16
用膠水做小兔子的簡單方法 瀏覽:680
慢性皮膚病康復訓練方法 瀏覽:284
上課如何變積極的方法 瀏覽:443
印章質量檢測與規范方法 瀏覽:497
蘋果設置設備在哪裡設置方法 瀏覽:936
棉花的種植密度和方法 瀏覽:25
組織行為學態度測量方法 瀏覽:647
天際隔水燉使用方法 瀏覽:716
肺結節有什麼方法解決嗎 瀏覽:128
成衣製作方法分析 瀏覽:783
香樟種植方法 瀏覽:106
泮托拉唑的食用方法 瀏覽:807
解決解決問題的策略方法 瀏覽:725
熏魚乾的食用方法 瀏覽:503
gridview使用方法 瀏覽:965
用什麼方法檢查是否肌萎 瀏覽:95