很多學生或初入職的人,在做數據分析的時候,往往太注重技術細節和工具,而忽略了問題的全面性認識。我們做數據分析多為了解決問題,做數據往往只是手段。如果我們不清楚分析的目的,或對業務缺乏認識,或沉醉於高級數學技巧,我們做的就脫離實際。做數據分析時,我們的思維引導分析的過程,而不是分析結果影響我們的思想。所謂數據分析方法論,你說得正好,是思想引導。這些方法論都幫助我們建立思路,在開始做繁復的計算前想好了全盤棋局。
❷ 數據分析方法論有哪些
1、PEST分析法PEST,也就是政治(Politics)、經濟(Economy)、社會(Society)、技術(Technology),能從各個方面把握宏觀環境的現狀及變化趨勢,主要用戶行業分析。
宏觀環境又稱一般環境,是指影響一切行業和企業的各種宏觀力量。
對宏觀環境因素作分析時,由於不同行業和企業有其自身特點和經營需要,分析的具體內容會有差異,但一般都應對政治、經濟、技術、社會,這四大類影響企業的主要外部環境因素進行分析。
政治環境:政治體制、經濟體制、財政政策、稅收政策、產業政策、投資政策等。
社會環境:人口規模、性別比例、年齡結構、生活力式、購買習慣、城市特點等。
技術環境:折舊和報廢速度、技術更新速度、技術傳播速度、技術商品化速度等。
經濟環境:GDP 及增長率、進出口總額及增長率、利率、匯率、通貨膨脹率、消費價格指數、居民可支配收入、失業率、勞動生產率等。
2、5W2H分析法
5W2H,即為什麼(Why)、什麼事(What)、誰(Who)、什麼時候(When)、什麼地方(Where)、如何做(How)、什麼價格(How much),主要用於用戶行為分析、業務問題專題分析、營銷活動等。
該分析方法又稱為七何分析法,是一個非常簡單、方便又實用的工具,以用戶購買行為為例:
Why:用戶為什麼要買?產品的吸引點在哪裡?
What:產品提供的功能是什麼?
Who:用戶群體是什麼?這個群體的特點是什麼?
When:購買頻次是多少?
Where:產品在哪裡最受歡迎?在哪裡賣出去?
How:用戶怎麼購買?購買方式什麼?
How much:用戶購買的成本是多少?時間成本是多少?
3、SWOT分析法
SWOT分析法也叫態勢分析法,S (strengths)是優勢、W (weaknesses)是劣勢,O (opportunities)是機會、T (threats)是威脅或風險。
SWOT分析法是用來確定企業自身的內部優勢、劣勢和外部的機會和威脅等,通過調查列舉出來,並依照矩陣形式排列,然後用系統分析的思想,把各種因素相互匹配起來加以分析。
運用這種方法,可以對研究對象所處的情景進行全面、系統、准確的研究,從而將公司的戰略與公司內部資源、外部環境有機地結合起來。
4、4P營銷理論
4P即產品(Proct)、價格(Price)、渠道(Place)、推廣(Promotion),在營銷領域,這種以市場為導向的營銷組合理論,被企業應用最普遍。
可以說企業的一切營銷動作都是在圍繞著4P理論進行,也就是將:產品、價格、渠道、推廣。通過將四者的結合、協調發展,從而提高企業的市場份額,達到最終獲利的目的。
產品:從市場營銷的角度來看,產品是指能夠提供給市場,被入們使用和消費並滿足人們某種需要的任何東西,包括有形產品、服務、人員、組織、觀念或它們的組合。
價格:是指顧客購買產品時的價格,包括基本價格、折扣價格、支付期限等。影響定價的主要因素有三個:需求、成本與競爭。
渠道:是指產品從生產企業流轉到用戶手上全過程中所經歷的各個環節。
促銷:是指企業通過銷售行為的改變來刺激用戶消費,以短期的行為(比如讓利、買一送一,營銷現場氣氛等等)促成消費的增長,吸引其他品牌的用戶或導致提前消費來促進銷售的增長。廣告、宣傳推廣、人員推銷、銷售促進是一個機構促銷組合的四大要素。
5、邏輯樹法
邏輯樹又稱問題樹、演繹樹或分解樹等。它是把一個已知問題當成“主幹”,然後開始考慮這個問題和哪些相關問題有關,也就是“分支”。邏輯樹能保證解決問題的過程的完整性,它能將工作細分為便於操作的任務,確定各部分的優先順序,明確地把責任落實到個人。
邏輯樹的使用必須遵循以下三個原則:
要素化:把相同的問題總結歸納成要素。
框架化:將各個要素組織成框架。遵守不重不漏的原則。
關聯化:框架內的各要素保持必要的相互關系,簡單而不獨立。
6、AARRR模型
AARRR模型是所有運營人員都要了解的一個數據模型,從整個用戶生命周期入手,包括獲取(Acquisition)、激活(Activition)、留存(Retention)、變現(Revenue)和傳播(Refer)。
每個環節分別對應生命周期的5個重要過程,即從獲取用戶,到提升活躍度,提升留存率,並獲取收入,直至最後形成病毒式傳播。
❸ 產品經理必會的10種數據分析方法
產品經理必會的10種數據分析方法
隨著人口和流量紅利的下降,互聯網行業必然會朝著精益化運營的方向發展。數據分析在很多互聯網人的工作中越發顯得重要,而對於產品經理來說,更是如此。
本文將為產品經理介紹數據分析的基本思路,並基於此,衍生出 2 個常見方法和 7 個應用手段,希望在數據分析的實際應用中能給大家帶來幫助。
一、數據分析的基本思路數據分析應該以業務場景為起始思考點,以業務決策作為終點。
基本思路為 5 步,首先要挖掘業務含義、制定分析計劃、從分析計劃中拆分出需要的數據、再根據數據分析的手段提煉業務洞察,最終產出商業決策。
接下來我們用一個案例來具體說明這 5 步思路:某國內 P2P 借貸類網站,市場部在網路和 hao123 上都有持續的廣告投放,吸引網頁端流量;最近內部同事建議嘗試投放 Google 的 SEM;另外,也需要評估是否加入金山網路聯盟進行深度廣告投放。在這種多渠道的投放場景下,產品經理該如何進行深度決策?1. 挖掘業務含義
首先要了解市場部想優化什麼,並以此為核心的 KPI 去衡量。渠道效果的評估,最重要的是業務轉化:對 P2P 類網站來說,是否『發起借貸』遠遠比『用戶數量』重要。
所以無論是 Google 還是金山渠道,都要根據用戶群體的不同,優化相應用戶的落地頁,提升轉化。
2. 制定分析計劃
以『發起借貸』為核心轉化點,分配一定的預算進行流量測試,觀察對比注冊數量及 ROI 效果,可以持續觀察這部分用戶的後續價值。
3. 拆分查詢數據
根據各個渠道追蹤流量、落地頁停留時間、落地頁跳出率、網站訪問深度以及訂單類型數據,進行用戶分群。
4.提煉業務洞察
在不同渠道進行投放時,要根據 KPI 的變化,推測業務含義。比如谷歌渠道的效果不好,可能因為谷歌大部分的流量在海外,可能會造成轉化率低。而金山網路聯盟有很多展示位置,要持續監測不同位置的效果,做出最後判斷。
5.產出商業決策
最後根據數據洞察,指導渠道的投放決策制。比如停止谷歌渠道的投放,繼續跟進金山網路聯盟進行評估,而落地頁要根據數據指標持續地進行優化。
二、常見的數據分析方法(一)內外因素分解法內外因素分解法是把問題拆成四部分,包括內部因素、外部因素、可控和不可控,然後再一步步解決每一個問題。
社交招聘類網站,一般分為求職者端和企業端,向企業端收費方式之一是購買職位的廣告位。業務端人員發現『發布職位』數量在過去的 6 個月里有緩慢下降的趨勢。
對於這類某一數據下降的問題,從產品經理的角度來說,可以如何拆解?
根據內外因素分解法分析如下:
1.內部可控因素
產品近期上線更新、市場投放渠道變化、產品粘性、新老用戶留存問題、核心目標的轉化;
2.外部可控因素
市場競爭對手近期行為、用戶使用習慣的變化、招聘需求隨時間的變化;
3.內部不可控因素
產品策略(移動端/PC端)、公司整體戰略、公司客戶群定位(比如只做醫療行業招聘);
4.外部不可控因素
互聯網招聘行業趨勢、整體經濟形勢、季節性變化;
(二)DOSSDOSS 是從一個具體問題拆分到整體影響,從單一的解決方案找到一個規模化解決方案的方式。
某在線教育平台,提供免費課程視頻,同時售賣付費會員,為付費會員提供更多高階課程內容。如果我想將一套計算機技術的付費課程,推送給一群持續在看 C++ 免費課程的用戶,產品經理應該如何輔助分析?按 DOSS 的思路分解如下:
1.具體問題
預測是否有可能幫助某一群組客戶購買課程。
2.整體
首先根據這類人群的免費課程的使用情況進行數據分析,之後進行延伸,比如對整體的影響,除了計算機類,對其他類型的課程都進行關注。
3.單一回答
針對該群用戶進行建模,監控該模型對於最終轉化的影響。
4.規模化
之後推出規模化的解決方案,對符合某種行為軌跡和特徵的行為進行建模,將課程推薦模型加入到產品設計中。
三、數據分析的應用手段根據基本分析思路,常見的有 7 種數據分析的手段。(一)畫像分群畫像分群是聚合符合某中特定行為的用戶,進行特定的優化和分析。
比如在考慮注冊轉化率的時候,需要區分移動端和 Web 端,以及美國用戶和中國用戶等不同場景。這樣可以在渠道策略和運營策略上,有針對性地進行優化。(二)趨勢維度
建立趨勢圖表可以迅速了解市場, 用戶或產品特徵的基本表現,便於進行迅速迭代;還可以把指標根據不同維度進行切分,定位優化點,有助於決策的實時性;(三)漏斗洞察通過漏斗分析可以從先到後的順序還原某一用戶的路徑,分析每一個轉化節點的轉化數據;
所有互聯網產品、數據分析都離不開漏斗,無論是注冊轉化漏斗,還是電商下單的漏斗,需要關注的有兩點。第一是關注哪一步流失最多,第二是關注流失的人都有哪些行為。
關注注冊流程的每一個步驟,可以有效定位高損耗節點。
(四)行為軌跡
行為軌跡是進行全量用戶行為的還原。只看 PV、UV 這類數據,無法全面理解用戶如何使用你的產品。了解用戶的行為軌跡,有助於運營團隊關注具體的用戶體驗,發現具體問題,根據用戶使用習慣設計產品,投放內容;(五)留存分析留存是了解行為或行為組與回訪之間的關聯,留存老用戶的成本要遠遠低於獲取新用戶,所以分析中的留存是非常重要的指標之一;
除了需要關注整體用戶的留存情況之外,市場團隊可以關注各個渠道獲取用戶的留存度,或各類內容吸引來的注冊用戶回訪率,產品團隊關注每一個新功能對於用戶的回訪的影響等。(六)A/B 測試A/B 測試是對比不同產品設計/演算法對結果的影響。
產品在上線過程中經常會使用 A/B 測試來測試產品效果,市場可以通過 A/B 測試來完成不同創意的測試。
要進行 A/B 測試有兩個必備因素:
1.有足夠的時間進行測試;
2.數據量和數據密度較高;
因為當產品流量不夠大的時候,做 A/B 測試得到統計結果是很難的。而像 LinkedIn 這樣體量的公司,每天可以同時進行上千個 A/B 測試。所以 A/B 測試往往公司數據規模較大時使用會更加精準,更快得到統計的結果。
(七)優化建模當一個商業目標與多種行為、畫像等信息有關聯性時,我們通常會使用數據挖掘的手段進行建模,預測該商業結果的產生;
例如:作為一家 SaaS 企業,當我們需要預測判斷客戶的付費意願時,可以通過用戶的行為數據,公司信息,用戶畫像等數據建立付費溫度模型。用更科學的方式進行一些組合和權重,得知用戶滿足哪些行為之後,付費的可能性會更高。
以上這幾種數據分析的方法論,僅僅掌握單純的理論是不行的。產品經理們需要將這些方法論應用到日常的數據分析工作中,融會貫通。同時學會使用優秀的數據分析工具,可以事半功倍,更好的利用數據,實現整體增長。
❹ 數據分析方法論 有對比才有效果
數據分析方法論:有對比才有效果
處於大數據時代,如果只是一味埋頭苦幹,無法在大環境里站住腳跟,只有擁有大局觀,才能讓自己的電商之路走的更遠,這種時候,學會 數據分析 對比法顯得尤為重要。
上篇文章主要簡單講解了數據分析入門的5種方法( 具體詳見)《數據分析5種入門方法,你get了么?》。本文就先跟大家講講在電商圈運營的最多的,也是非常實用簡單的第一種思維——對比。
有參照、有對比,才會在知道好壞高低。如果只是單一地看,了解的信息必然不夠全面,無法得出真正有用的信息。那麼到底對比在一般情況下,都有哪些運用?
首先,給大家科普兩個基本的概念。
對比分析,一般分為兩種,一種叫靜態比較,一種叫動態比較。
靜態比較是在同一時間條件下對不同總體指標的比較,也叫橫向比較。比如可以是自己單品跟同行其他單品比較。也可以是自身情況,在同一時期跟同行業的一個情況的對比。
動態比較是在同一總體條件下對不同時期指標數值的比較,也叫縱向比較。
這種方法,更多的也運用在一個趨勢的觀察,有比較就可以看一個發展的好壞。然後單一看當天或者一個月,根本看不出是在走上坡還是下坡。對比可以看所做類目的一個趨勢,到底是否還是流行,發現苗頭提前做好風險的規避,盡可能減少損失,或者盡可能擴大優勢,爭取前端。
用一個詳細的案例來看。比如需要看一個店鋪目前的流量布局包括結構是否科學。
這個數據源可以從生意參謀——流量地圖上下載。
從流量地圖上下載下來的內容。然後大家透視、作圖( 具體詳見》》》)。
對比法到底有什麼優勢?先一起來一張圖:
如果只是看到這個,可能只是單單了解做了一些什麼。但如果是下圖這樣:
就可以看出,自身在做什麼,同行在做什麼,這個同行是同行優秀的一個數據,那可以看出同行有哪些動作是比較有效果的,比如淘外流量,但是自身如果在這一方面是沒有去做,數據顯示同行目前在使用這塊取得不錯的效果,賣家也可以考慮是不是要將自己將這一塊跟進。再比如:
看一個付費推廣的渠道,因為本來就是同行,基本是同一類目,所以可以看看同行跟自身付費推廣的一個區別。看看具體哪些方式是效果比較好的,但是自身沒有好好利用,沒有利用的原因是活動報不上還是說那個投入產出比太低?這一些原因需要根據自己店鋪的情況去思考,然後可以進行一個規劃,爭取做哪一些,獲取哪一些的作用等等,為店鋪的定下可以發力的方向。
只有正確利用比較進行數據分析之後,很多事情才會有一個清晰的思路。這是單單只看自身而獲得不了的結果。
以上是小編為大家分享的關於數據分析方法論 有對比才有效果的相關內容,更多信息可以關注環球青藤分享更多干貨