1. 如何對兩種不同實驗方法測定同一指標的數據進行統計學分析
首先要判斷兩組數據是否是正態分布資料,兩組是否方差齊,
然後可以計算兩組的均數進行t檢驗
如果不滿足正態分數,需要進行數據變換
實在不行的話,最後用秩和檢驗
1、細分剖析
細分剖析是數據剖析的根底,單一維度下的目標數據信息價值很低。細分辦法能夠分為兩類,一類是逐步剖析,比方:來北京市的訪客可分為向陽,海淀等區;另一類是維度穿插,如:來自付費SEM的新訪客。
細分用於處理一切問題。比方漏斗轉化,實際上便是把轉化進程依照過程進行細分,流量途徑的剖析和評價也需要很多的用到細分辦法。
2、比照剖析
比照剖析主要是指將兩個彼此聯系的目標數據進行比較,從數量上展示和闡明研討目標的規劃巨細,水平高低,速度快慢等相對數值,通過相同維度下的目標比照,能夠發現,找出事務在不同階段的問題。常見的比照辦法包括:時間比照,空間比照,標准比照。
3、漏斗剖析
轉化漏斗剖析是事務剖析的基本模型,最常見的是把最終的轉化設置為某種意圖的實現,最典型的便是完成買賣。但也能夠是其他任何意圖的實現,比方一次運用app的時間超越10分鍾。
3. 大白話談大數據:數據分析方法之對比分析
對比分析是數據分析中最常用、好用、實用的分析方法,它是將兩個或兩個以上的數據進行比較,分析其中的差異,從而揭示這些事物代表的發展變化情況以及變化規律。
先看看思維導圖:
使用分析方法(和誰比)
如何使用對比分析法,就要先考慮 和誰比 這個問題。
和自己比較
通過和自己過去的平均值相比,發現問題,圍繞問題進行分析,出現的問題是自身問題導致的還是行業問題導致的,如果自己的環比出現了問題,就要從自身上找原因,提高活躍率。
和行業比較
將自己的平均值和行業平均值進行比較,和同行一比,往往會發現很多問題。
使用分析方法(如何比較)
第二個要考慮的問題就是 如何比較 ?
數據整體的大小 :用某些指標來衡量整體數據的大小,常用的數據指標為:平均值、中位數、某個業務指標
數據整體波動 :用變異系數來衡量整體數據的波動情況
趨勢變化 :運用對比分析來分析趨勢變化的時候,最主要的是找到合適的對比標准。找到標准,將對比對象的指標與標准進行對比,就能得出有結果了。目前常用標準是時間標准、空間標准、特定標准。
第一類時間標准 :
動作前後對比 ,可以看到動作前後的效果,如對比某次營銷活動前後的對比。
時間趨勢對比 ,可以評估指標在一段時間內的變化,可以通過環比,來判斷短時間內趨勢的變化。
與去年同期對比 ,當數據存在時間周期變化的時候,可以與去年同期對比,剔除時間周期變化因素。通過同比,來判斷短時間內趨勢的變化。
環比:本月和上個月比較,短時間的比較
同比:本年和上一年比較,長時間的比較
第二類空間標准 :
A/B測試 ,在同一時間維度,分別讓組成成分相同的目標用戶,進行不同的操作,最後分析不同組的操作效果,A/Btest我接下去也會講。
相似空間對比 ,運用兩個相似的空間進行比較,找到二者的差距,比如同類型甲APP(貝殼)乙APP(自如)的年留存率情況,明顯看出哪個APP的留存率更高,日常生活中相似空間比較常用的就是城市、分公司之間的對比。
先進空間對比 ,是指與行業內領頭羊對比,知曉差距多少,再細分原因,從而提高自身水平。如淘寶和京東的對比。
第三類特定標准 :
與計劃值對比 ,目標驅動運營,在營銷中會制定年、月、甚至日的目標,通過與目標對比,分析自己是否完成目標,若未完成目標,則深層次分析原因。目標驅動的好處,就是讓運營人員一直積極向上努力的去完成目標,從而帶動公司盈利。
與平均值對比 ,與平均值對比,主要是為了知曉某部分與總體差距。
與理論值對比 ,這個對比主要是因為無歷史數據,所以這個時候只能與理論值對比。理論值是需要經驗比較豐富的員工,利用工作經驗沉澱,參考相似的數據,得出來的值。
對比分析方法原則
對比分析需要堅持可比性原則:對比對象相似,對比指標同質
對比對象相似 :進行比較的時候注意,比較規模要一致,對比對象越相似,就越具有可比性,比如說不能用你的工資和思聰的零花錢進行比較,這樣不公平。如果要比,就和你出生,教育背景相似的人進行比較。當然這只是個不恰當的例子haha
對比指標同質: 同質可以表現在下面三點:
1.指標口徑范圍相同 ,比如甲 APP 與乙 APP 的用戶年留存率比較,如果用甲 APP 18年的用戶留存率,那乙 APP 也需要是18年的,不能拿乙17年的與甲18年的比較。
2.指標計算方法一樣 ,也就是計算公式相同,比如一個用除法、一個用加法進行計算。
3.指標計量單位一致 ,不能拿身高和體重進行比較,二者常用單位一個是厘米,一個是千克。
分析方法應用
舉一個例子吧,A/Btest
什麼是A/B測試呢?為統一個目標制定兩個版本,這兩個版本只有某個地方不一樣,其他地方保持不變,讓一部分用戶使用A版本,一部分用戶使用B版本,A版本為實驗組,B版本為對照組,兩個版本運行一段時間後,分別統計兩組用戶的表現,然後對兩組數據進行對比分析,選擇效果好的版本,正式發布給全部用戶。
當然現實中的A/Btest也遠沒有這么簡單,我接下去會寫一篇文章專門講講A/Btest的,挖坑+1 hahaha
最後打個小廣告,我的公眾號(顧先生的數據挖掘)
喜歡的小夥伴可以關注下,你的關注是我最大的動力。