1. 海水分析化學的有機物分析
海水中的有機物含有氨基酸、碳水化合物等來自生物的天然存在的物質,和石油烴、氯代烴類殺蟲劑等人為的環境污染物。它們的濃度一般都很低,通常為ppb水平或更低,因此在大量無機鹽存在下分析有機物時,必須預先用蒸發、溶劑萃取、電泳脫鹽和離子交換樹脂分離等方法加以濃縮。常用的分析方法有分光光度法、色譜法、熒光分析法和紅外吸收光譜法等。在研究海洋有機物在元素地球化學平衡中的作用(見海洋地球化學)和它們對無機鹽類和氧的循環所起的作用時,常討論總有機碳、總有機磷和總有機氮的含量。
總有機碳分析 有濕氧化法、光化學氧化法和干燃燒法。濕氧化法是在水樣中加入氧化劑進行氧化,使有機碳生成二氧化碳;光化學氧化法是用汞弧燈管照射水樣,使有機碳進行光化學氧化而生成二氧化碳;干燃燒法則將水樣酸化,然後蒸干,或用少量水樣直接注射入燃燒管,在催化劑存在下通入氧氣進行高溫燃燒,使有機碳轉化成二氧化碳,然後用電導法,氣相色譜法或非色散紅外分析法測定。這 3個方法中,以濕氧化法比較簡便易行,應用最廣。
總有機氮分析 可用改進的微量謝爾達爾法或光化學氧化法,將試樣中的有機氮分解並生成硝酸鹽,也可在鹼性條件下用氧化劑將其氧化成硝酸鹽,然後還原成亞硝酸鹽,按常規方法測定。
總有機磷分析 在加壓下將有機磷分解,使生成無機磷酸鹽,然後用磷鉬藍光度法測定。也可用光化學氧化法和過硫酸鹽氧化法進行分解,然後測定。後面這兩種方法,因適合連續自動化測定,已被推薦為標准方法。
碳水化合物分析 可測定其總量,也可測定個別單糖的含量。總量的測定是用濃硫酸將碳水化合物脫水,再使其與某些芳香類化合物形成有色化合物,進行比色測定。常用的試劑有苯酚、蒽酮、N-乙基咔唑、5-甲基苯二酚-【1,3】、1-色氨酸等。 個別單糖的測定可以在分離富集後用色譜分析、分光光度法分析、酶分析或熒光分析法檢測。
氨基酸分析 常用配位交換法富集海水中的氨基酸,即用亞氨基二乙酸系陽離子交換樹脂與某些重金屬離子,如銅離子,結合而成的金屬-樹脂交換劑,選擇吸附氨基酸,然後用自動氨基酸分析儀進行測定。還可將分離富集後的氨基酸製成甲基或乙基衍生物,再進行氣液色譜分析。此外,熒光分析法和高效液相色譜法已得到較廣泛的應用,例如用鄰-苯二醛和氨基酸生成熒光產物後進行檢測。此法靈敏度高,檢測濃度可達幾個pmol。
脂肪酸、羥基酸和脂類化合物分析 通常在酸化條件下進行萃取濃縮,再製成衍生物或熒光化合物,然後用氣相色譜法或高效液相色譜法分析。還可用間接的方法測定總脂肪酸的濃度。如用氯仿萃取濃縮後,使形成銅絡合物,再用原子吸收光譜測定絡合物中的銅。
光合色素分析 主要是進行葉綠素的分析。為此,用90%丙酮萃取後,用分光光度計測出在 3個不同波長下的吸光值,應用SCOR/UNESCO方程式或其他3色分光光度方程式計算,可分別得出葉綠素a、b、c的濃度。
維生素分析 通常分析維生素B12、維生素 B1和生物素。用生物鑒定法檢測其濃度。
烴類化合物分析 有天然存在的和因石油污染而進入海洋的。其測定方法首先是用有機溶劑萃取,分離之後,再根據測定總量或測定個別組分而選擇分析的方法。對一般污染監測,可測定其總量。萃取後,或者用色譜分離法除去其他有機化合物後,用紫外吸收光譜法測定,也可用紅外吸收光譜分析法對烴類進行定性或定量分析。個別組分的揮發性烴,可先用有機溶劑萃取濃縮,通入惰性氣體,用吸附劑或冷阱收集,解吸後進行氣相色譜分析。高效液相色譜法有連續定量檢測的優點,應用較廣。還可用氣相色譜-質譜聯用分析法,它有較高的靈敏度。
氯化烴類化合物分析 人類活動造成的海洋污染物,如 DDT、DDD、狄氏劑、PCB類等各種氯代烴類化合物在海水中的濃度,一般在pmol以下,常用液-液萃取法和吸附劑分離法,先分離、富集,然後用氣相色譜法進行分析。
酚類化合物分析 在沿岸海域的海水中,酚類化合物的濃度較大,它主要是工業污染物,少量是由潮間帶的固著藻類分泌出來的,可用比色法分析。例如從酸性溶液中用水汽蒸餾法分離出酚類化合物之後,加入4-氨基安替比林,生成有色衍生物,用光度法測定。也可用熒光法和極譜法,測定酚類化合物。個別酚類化合物可用大孔陰離子交換樹脂進行分離,然後用氣相色譜法或氣相色譜-質譜聯用法測定。 用液相色譜法可分析某些具有天然熒光的酚類。沿岸水中的腐殖質、木質素等多酚類物質,可用熒光分光光度法檢測。
有機汞、砷化合物分析 對人類有直接毒害的化合物。對有機汞化合物,一般先將其破壞分解或氧化為無機汞然後測定。還可用萃取法將有機汞預先分離,或將其轉化為碘化物或氯化物後再分離,最後用氣相色譜法測定。分子量較低的有機砷化合物因易於揮發,可用氣相色譜法或原子吸收法。為鑒別各種形式的砷,可用硼氫化鈉將其還原成相應的胂類化合物,以冷阱收集後緩慢升溫,然後用色譜法或原子吸收法測定。
表面活性物質分析 在海水中有自然存在的和人類活動引入的表面活性物質,它們集中於海-氣界面,必須用特殊的采樣器采樣。人為的陰離子表面活性劑,可用次甲藍分光光度法測定,也可在試樣中加入過量的陽離子表面活性劑,酸化後用 4苯硼化鈉標准溶液滴定。此外,還可應用金屬化合物如雙-乙二胺銅(Ⅱ)與陰離子表面活性劑生成絡合物後,用有機溶劑萃取,再用原子吸收法測定金屬的含量。對人為的陽離子表面活性劑,可在試樣中加入過量的陰離子表面活性劑後,用與上面相似的方法測出其含量。若需鑒定各組分,可用液相色譜法分離後加以測定。海水中自然存在的表面活性物質,可用極譜法或分光光度法測定。
自動化分析 為了分析數量很多的海水樣品,最好在現場進行連續自動測定。海水自動化學分析系統主要由取樣器、蠕動泵、分析線、延遲和反應系統、流動式比色計記錄裝置等幾部分所組成。根據上述原理已設計和生產出多種型號的測定氮、磷、硅等微量成分和有機碳的自動分析系統。在另一類自動分析中,使用了感測器,將感測器投放於海水中,連續走航記錄。但是,感測器的靈敏度還不夠高,已採用過的有鹽度、pH、氧化還原電位、溶解氧、濁度、氟離子濃度等少數項目的測定。
海水分析化學雖然已發展成為分析化學和海洋化學中較系統的一個分支學科。但是,海洋科學的發展,仍給它提出了許多有待解決的課題。例如:保持現場狀態不同種類水樣的采樣方法,超痕量無機組分的分析及其分析准確度的提高,不同組分的形態分析方法,超痕量有機組分的分析,快速的現場自動分析方法,保證和提高分析可靠性和可比性的方法學的研究和有關標准參考物質的制備等。
2. 碳、氫的測定
73.11.1.1 重量法
方法提要
一定量煤樣在氧氣流中燃燒,煤中碳生成二氧化碳、氫生成水。生成的二氧化碳和水分別被二氧化碳吸收劑和吸水劑吸收,根據吸收劑的增量,計算煤中碳、氫含量。煤樣中硫和氯對碳測定的干擾,在三節爐法中分別用鉻酸鉛和卷狀銀絲除去,在二節爐法中用高錳酸銀熱分解產物除去; 氮 (氮氧化合物) 對碳測定的干擾,由粒狀二氧化錳除去。
反應方程式如下。
燃燒反應:
岩石礦物分析第四分冊資源與環境調查分析技術
對CO2和H2O的吸收反應:
岩石礦物分析第四分冊資源與環境調查分析技術
排除硫、氯、氮對測定干擾的反應:
三節爐法中,在燃燒管內用鉻酸鉛脫除硫的氧化物,用卷裝銀絲脫氧: 二節爐法中,用高錳酸銀熱分解產物脫除硫和氯:
岩石礦物分析第四分冊資源與環境調查分析技術
在燃燒管外部,用粒狀二氧化錳除去氮氧化物:
岩石礦物分析第四分冊資源與環境調查分析技術
儀器
碳氫測定裝置 見圖73.34。
碳氫測定裝置主要由燃燒系統、凈化系統和吸收系統 3 部分組成。
燃燒系統為一個三節爐或二節爐,爐內徑 35mm,內有一燃燒管,管內裝燃燒舟。
三節爐 第一節長 230mm,可加熱到 (850 ± 10) ℃,能沿水平方向移動; 第二節長330~ 350mm,可加熱到 (800 ± 10) ℃ ; 第三節長 130~ 150mm,可加熱到 (600 ± 10) ℃ 。
兩節爐 第一節長 230mm,可加熱到 (850 ± 10) ℃,能沿水平方向移動; 第二節長130~ 150mm,可加熱到 (500 ± 10) ℃ 。
燃燒管 素瓷、石英、剛玉或不銹鋼製品,長 1100~1200mm (三節爐用) 或 800mm(兩節爐用) ,內徑 20~ 22mm,壁厚約 2mm。
燃燒舟 長約 80mm,素瓷、剛玉或石英製品。
凈化系統包括兩個乾燥塔 (容積 500mL) 和一個流量計 (測量范圍 0~150mL/min) 。
吸收系統包括 1 個吸水管、1 個除氮管和 2 個二氧化碳吸收管。
帶磨口塞的玻璃管 (圖73.35) 或小型乾燥器 (不裝乾燥劑) 。
氣泡計 容量約 10mL (圖73.36) 。
橡膠帽 (圖73.37) 或橡膠塞、銅接頭。
圖73.34 碳氫測定裝置示意圖
圖73.35 玻帶磨口塞的玻璃管(數字單位 mm)
圖73.36 氣泡計(數字單位 mm)
圖73.37 橡膠帽(數字單位 mm)
試劑
鹼石棉 粒度1~2mm; 或鹼石灰,粒度0.5~2mm; 或粒狀氫氧化鈣,粒度1~3mm。
無水氯化鈣 粒度 2~5mm; 或無水高氯酸鎂,粒度 1~3mm。
氧化銅 線狀,長約 5mm。
鉻酸鉛 粒度 1~4mm。
卷狀銀絲 絲直徑約 0.25mm。
卷狀銅絲 絲直徑約 0.5mm。
氧氣 不含氫。
硫酸。
三氧化鎢。
二氧化碳鋼瓶裝氣體。
粒狀二氧化錳稱取25gMnSO4·5H2O溶於500mL水中。另稱16.4gKMnO4溶於300mL水中。把兩種溶液都加熱到50~60℃。將高錳酸鉀溶液慢慢注入硫酸錳溶液中,並劇烈攪拌。加入10mL(1+1)H2SO4,再將溶液加熱到70~80℃,繼續攪拌5min,停止加熱,靜置2~3h。用熱水以傾瀉法洗到中性。將沉澱移到漏斗過濾,然後在150℃下烘乾(約2~3h),得到褐色疏鬆狀的二氧化錳。小心破碎和過篩,取粒度0.5~2mm的顆粒備用。
氧化氮指示膠在瓷蒸發皿中將小於2mm的40g無色硅膠和30mLHCl攪拌均勻。在砂浴上蒸發多餘的鹽酸直到看不見明顯的蒸氣逸出為止。然後把硅膠粒浸入30mL100g/LKSCN溶液中,攪拌均勻後取出烘乾。再把它浸入30mL2g/L雷伏奴耳(乳酸-6,9二氨基-2乙氧基吖啶)溶液中,攪拌均勻後取出,用黑紙包好烘乾,放在深色瓶中置於暗處備用。
高錳酸銀熱分解產物稱取100gKMnO4溶於2L沸水中。取107.5g的AgNO3溶於約50mL水中,然後在不斷攪拌下緩緩注入沸騰的高錳酸鉀溶液中,靜置過夜後得到有光澤的深紫色結晶。用水洗滌數次,在60~80℃下乾燥1h。將晶體一小份一小份地放在瓷皿中,在電爐上緩緩加熱到驟然分解,得到銀灰色疏鬆產物,收集在磨口瓶中備用。未分解的高錳酸銀不宜大量貯存,以免受熱分解引起爆炸。
試驗准備
1)測定裝置的填充和連接。將測定裝置各部件和容器依次連接,燃燒管兩端用耐熱橡膠帽或橡膠塞、銅接頭連接。
氧氣凈化系統包括兩個氣體乾燥塔。一個氣體乾燥塔下部(約1/3)裝鹼石棉或鹼石灰,上部(約2/3)裝無水氯化鈣或無水高氯酸鎂;另一個裝無水氯化鈣或無水高氯酸鎂。凈化劑經70~100次測定後,應檢查並進行必要的更換。氧氣由帶有氧氣吸入器的氧氣鋼瓶供給。為指示氧氣流量,在兩個乾燥塔之間連接一個氧氣流量計。
吸收系統由4個U型管組成,依次為吸水管(內裝無水氯化鈣或無水高氯酸鎂)、除氮管(採用直徑15mm、裝試劑部分高120mm的大U型管,前1/2裝二氧化錳,後1/2裝無水氯化鈣或無水高氯酸鎂)和2個二氧化碳吸收管(前2/3裝鹼石棉或鹼石灰,後1/3裝無水氯化鈣或無水高氯酸鎂)。各U型管磨口塞處塗少許真空硅脂。吸收系統的末端連接一個空U型管(防止硫酸倒吸)和一個裝有濃硫酸的氣泡計。
用作吸水劑的無水氯化鈣如果含有鹼性物質,應先用二氧化碳飽和,並除去過剩的二氧化碳。處理方法:把無水氯化鈣破碎到需要的粒度(如果氧化鈣在保存或破碎過程中已吸水,可放到高溫爐中在300℃下灼熱1h)裝入氣體乾燥塔內(可串聯若干個),緩慢通入乾燥的二氧化碳氣(由啟普氏氣體發生器或由帶有減壓裝置的二氧化碳鋼瓶供給)3~4h,然後關閉乾燥塔,放置過夜。通入不含二氧化碳的乾燥空氣,將過剩的二氧化碳去除。處理後的無水氯化鈣放入嚴密的容器中貯存。市售分析純無水氯化鈣的鹼性物質(氫氧化鈣)含量小於0.02%的,可不進行處理。
出現下列現象時,應更換U型管中的試劑:U形管中的無水氯化鈣開始溶化並阻礙氣體暢通;第二個二氧化碳吸收管一次質量增加達50mg時,應更換第一個吸收管中的二氧化碳吸收劑;二氧化錳一般使用50次左右應進行檢查或更換。檢查方法:將氧化氮指示膠裝在玻璃管中,兩端用棉花堵上,接在除氮管後面,或將指示膠少許放在二氧化碳吸收管的進氣端棉花處。燃燒煤樣,如果指示膠由草綠色變成血紅色,表示應更換二氧化錳。
上述 U 型管更換試劑後,應以 120mL/min 流量通氧氣,質量恆定後方能使用。
燃燒系統燃燒管按下述方式充填: 三節爐用燃燒管充填 (圖73.38) ,首先製成 3 個長 30mm 和 1 個長 100mm 的卷裝銅絲,直徑略小於燃燒管的內徑,以便能自由推入管內並與管壁保持盡可能小的間距。100mm 長的卷裝銅絲二端帶一個粗銅絲製成的環或鉤,以便由管中取出或放入。製成的卷裝銅絲應在高溫爐中於 800℃下灼燒 1h。燃燒管出氣端起,先留出約 50mm 空間,然後依次填充 30mm 卷狀銀絲、30mm 卷裝銅絲、130~150mm(與第三節電爐長度一致) 鉻酸鉛 (如用石英管,應該用銅片把鉻酸鉛與管壁隔開) 、30mm 卷裝銅絲、330~ 350mm (與第二節電爐長度一致) 線狀氧化銅、30mm 卷裝銅絲、310mm 空間 (與第一節電爐加上燃燒舟的長度相等) 和 100mm 卷裝銅絲。燃燒管兩端裝橡皮帽或橡皮塞,以便分別同凈化系統和吸收系統連通。橡皮帽或橡皮塞使用前應預先在105~ 110℃ 烘烤 8h。燃燒管中的充填物 (氧化銅、鉻酸鉛和卷裝銀絲) 經 70~ 100 次測定後應檢查和更換。
氧化銅用孔徑 1mm 篩篩去粉末後即可再用。鉻酸鉛可用 50g/L NaOH 熱鹼液浸泡,然後用水洗凈鹼液,烘乾,在 500~ 600℃ 下灼燒至少 30min,即可再用。卷裝銀絲用NH4OH 浸 5min 後,在水中煮沸 5min,用水沖洗後烘乾,可再用。
圖73.38 三節爐燃燒管的充填方式示意圖
兩節爐用燃燒管充填 (圖73.39) ,首先制 1 個長 100mm、兩個長 10mm 的卷裝銅絲,再用 100 目銅絲布剪成直徑與燃燒管匹配的圓形片 3~4 個 (防止高錳酸銀熱解產物被帶出) 。
圖73.39 二節爐燃燒管的充填方式示意圖
2) 爐溫校正。將工作熱電偶插入三節電爐的熱電偶孔內,使熱端稍進入爐膛內,冷端與高溫表連接。將爐溫升到規定溫度,保溫 1h。然後將標准熱電偶熱端沿燃燒管軸向依次插至燃燒管中對應第一、第二和第三節爐的中心處 (注意,勿使熱電偶與燃燒管壁接觸) 。根據標准熱電偶指示,調節相應電爐控制器,使爐溫達到規定溫度,恆溫 5min後記下相應工作熱電偶的溫度讀數。在日常測定中,即以此為准進行溫度控制。
3) 空白試驗。將裝置連接後,通電升溫並以 120mL / min 流量通氧氣,檢查整個系統的氣密性,直到各部分都不漏氣為止。在升溫過程中,將第一節電爐往返移動數次,通氣20min 左右。取下吸收系統,關閉各 U 形管磨口塞,用絨布擦凈,在天平旁放置 10min 後稱量。第一節爐達到並保持在 (850 ±10) ℃,第二節爐達到並保持在 (800 ± 10) ℃,第三節爐達到並保持在 (600 ±10) ℃ 時,開始做空白試驗。將第一節爐移至緊靠第二節爐,接上已稱量過的吸收系統並接通氧氣。在燃燒舟中放入三氧化鎢 (質量盡可能與日常測定時一致) 。打開橡皮塞,取出卷裝銅絲,將裝有三氧化鎢的燃燒舟推到第一節爐入口處。塞緊橡膠塞,調節氧氣流量為 120mL/min。移動第一節爐,使燃燒舟位於第一節爐中心處。通氣 23min,將第一節爐移回原位; 2min 後取下吸收管,用絨布擦凈,在天平旁放置 10min 後稱量。水分吸收管的增加量就是空白值。重復上述空白試驗,直到連續兩次所得空白值相差不超過 0.0010g 、除氮 U 型管和二氧化碳吸收管最後一次質量變化不超過0.0005g 時為止。取最後兩次空白值的平均值作為當天空白值。負壓供氧時,應先關閉靠近硫酸氣泡計的 U 型管,再依次關閉其他 U 型管,然後取下。
做空白試驗前,應先確定燃燒管的位置,使出口端溫度盡可能高而又不會使橡膠帽或橡膠塞受熱分解。若空白值不易達到穩定,可適當調節燃燒管的位置。
分析步驟
1) 三節爐法分析步驟。將第一節爐溫度控制在 (850 ± 10) ℃ ,第二節的爐溫控制在(800 ± 10) ℃,第三節的爐溫控制在 (600 ± 10) ℃,並使第一節爐緊靠第二節爐。
在預先灼燒過的燃燒舟中稱取 0.2g (精確至 0.0001g) 粒度小於 0.2mm 的空氣乾燥煤樣均勻鋪平。在煤樣上鋪一層三氧化鎢。若不立即測定,可把燃燒舟暫時存放在專用的磨口玻璃管或不加乾燥劑的乾燥器內。
將已恆量的吸收系統 U 型管磨口塞旋開後,接上燃燒系統,以每分鍾 120mL 的流量通入氧氣。打開入口端的橡膠塞,取出卷裝銅絲。若燃燒管內有瓷舟,用鎳鉻絲鉤取出。將盛有煤樣的燃燒舟迅速放入燃燒管中,用推棒推入,使瓷舟前端剛好在第一節爐口,將卷裝銅絲放在燃燒舟後面,塞上橡膠塞。通入氧氣,流量保持在 120mL/min。隔 1min,移動第一節爐,使燃燒舟的一半進入爐口; 過 2min,移動爐子,使燃燒舟全部進入爐口;再過 2min,再移動爐子,使燃燒舟位於爐子中心處。保溫 18min 後,把第一節爐移回原位。2min 後,拆下吸收系統的 U 型管並關閉其磨口塞,用絨布擦凈,在天平旁放置 10min後稱量 (除氮 U 型管不必稱量) 。
2) 二節爐法分析步驟。在這種情況下,第一節爐溫控制在 (850 ± 10) ℃ ,第二節爐溫控制在 (500 ±10) ℃,並使第一節爐緊靠第二節爐,每次空白試驗時間為 20min,燃燒舟在爐中心位置保溫時間為 13min。其他操作與三節爐法時相同。
3) 測定裝置和操作技術可靠性檢查。稱取約 0.2g 標准煤樣,按規定步驟操作,若實測值與標准值的差值在規定的不確定度內,表明裝置和操作正常。否則,需查明原因,徹底糾正後才能進行正式測定。
按下式計算空氣乾燥煤樣的碳、氫含量:
岩石礦物分析第四分冊資源與環境調查分析技術
式中:Cad為空氣乾燥煤樣中碳的質量分數,%;Had為空氣乾燥煤樣氫的質量分數,%;m為空氣乾燥煤樣的質量,g;m1為二氧化碳吸收管的增量,g;m2為水分吸收管的增量,g;m3為空白值,g;0.2729為由二氧化碳換算成碳的因數;0.1119為由水換算成氫的因數;Mad為空氣乾燥煤樣的水分的質量分數。
碳酸鹽二氧化碳含量大於2%時,則:
岩石礦物分析第四分冊資源與環境調查分析技術
式中:w(CO2,ad)為空氣乾燥煤樣的碳酸鹽二氧化碳的質量分數。
73.11.1.2 電量-重量法
方法提要
一定量煤樣在氧氣流中燃燒,生成的水與五氧化二磷反應生成偏磷酸,電解偏磷酸,根據電解所消耗的電量,計算煤中氫含量;生成的二氧化碳以二氧化碳吸收劑吸收,由吸收劑的增量,計算煤中碳含量。煤樣燃燒後生成的硫氧化物和氯用高錳酸銀熱解產物除去,氮氧化物用粒狀二氧化錳除去,以消除它們對碳測定的干擾。方法適用於褐煤、煙煤和無煙煤碳、氫的測定。
儀器裝置
電量-重量法碳氫測定儀(圖73.40)由氧氣凈化系統、燃燒裝置、鉑-五氧化二磷電解池、電量積分器和吸收系統等構成。
圖73.40 電量-重量法碳氫測定儀示意圖
氧氣凈化系統 凈化爐,長約 300mm,爐外徑約 100mm,爐膛直徑約 25mm 的管式電爐,可控溫 (800 ± 10) ℃。凈化管,長約 500mm,外徑約 22mm 的石英管或素瓷管。氣體乾燥管,3 個,容量約 150mL 的玻璃管。氧氣流量計,測量范圍 0~150mL/min。
燃燒裝置 燃燒爐和催化爐,長約 450mm,爐外徑約 100mm,爐膛直徑約 25mm 連成一體的二節管式爐,其中催化段長約 150mm,可控溫在 (300 ± 10) ℃,燃燒段長約300mm,可控溫在 (850 ± 10) ℃ 。
燃燒管 總長約 650mm,一端外徑約 22mm、內徑約 19mm、長約 610mm,距管口約100mm 處接有外徑約 8mm、內徑約 6mm、長約 50mm 的支管; 另一端外徑約 7mm、內徑約 3mm、長約 40mm 的異徑石英管 (圖73.41) 。
圖73.41 燃燒管示意圖(數字單位 mm)
燃燒舟 長 70~77mm 瓷舟。新舟使用前應在約 850℃下灼燒 2h。
帶推棒的橡皮塞 (圖73.42) 由鎳鉻絲推棒1 (直徑約2mm,長約700mm,一端捲成直徑約 10mm 的圓環) 、翻膠帽 2、硅橡膠管 3 (內徑約 6mm,外徑約 11mm) 、玻璃管 5(外徑約 7mm,長約 60mm) 、橡皮塞 4 等組成。在橡皮塞上打一直徑約 6mm 的孔,將玻璃管的一端穿過孔並伸出約 2mm; 玻璃管的另一端通過硅橡膠管與翻膠帽緊密連接,在翻膠帽的正中穿一小孔,使鎳鉻絲推棒的一端通過玻璃管後由翻膠帽上的小孔穿出。
圖73.42 帶推棒的橡皮塞示意圖
鎳鉻絲鉤 直徑約 2mm,長約 700mm,一端彎成小鉤。
硅橡膠管 內徑約 5mm,外徑約 9mm。
聚氯乙烯軟管或聚四氟乙烯管 內徑約 6mm,外徑約 8mm。
電解池 長約100mm、外徑約8mm、內徑約5mm 的專用電解池 (圖73.43) ,鉑絲間距約 0.3mm,池內表面塗有五氧化二磷。電解池外有外徑約 50mm、內徑 9~10mm、長約80mm 的冷卻水套。
電量積分器 電解電流 50~700mA 范圍內積分線性誤差小於 ±0.1%; 配有 4 位數字顯示器,數字顯示精確到 0.001mg 氫。
吸收系統 除氮 U 型管,直徑約 15mm 的 U 型管,內裝粒狀二氧化錳,裝試劑部分高 100~120mm,兩端堵以硅酸鋁棉。吸水 U 型管,直徑約 15mm 的 U 型管,內裝無水高氯酸鎂或無水氧化鈣,裝試劑部分高 100~120mm。吸收二氧化碳 U 型管,2 個,直徑約15mm 的 U 型管,4 /5 裝鹼石棉,1 /5 裝無水高氯酸鎂或無水氯化鈣,裝試劑部分高 100~120mm。氣泡計,容量約 10mL,內盛少許硫酸。
圖73.43 Pt-P2O5電解池示意圖
帶磨口的玻璃管或小型乾燥器 (不放乾燥劑) 。
試劑
鹼石棉 化學純,粒度 1~2mm; 或鹼石灰,化學純,粒度 0.5~2mm。
無水氯化鈣 粒度 2~5mm。
無水高氯酸鎂 粒度 1~3mm。
氧化銅 線狀 (長約 5mm) 。
三氧化鎢。
粒狀二氧化錳 製法與 73.11.1.1 相同。
高錳酸銀熱分解產物 製法與 73.11.1.1 相同。
真空硅脂。
變色硅膠 化學純。
硅酸鋁棉 工業品。
硫酸。
無水乙醇。
塗液 磷酸與丙酮以 (3 +7) 比例混和。
氧氣 氧氣鋼瓶需配有可調節流量的帶減壓閥的壓力表(可使用醫用氧氣吸入器) 。
測定準備
1) 凈化系統各容器的充填和連接。凈化管內充填線狀氧化銅,裝填部分長約280mm,兩端堵以硅酸鋁棉。3 個氣體乾燥管內按氧氣流入方向依次充填變色硅膠、鹼石棉和無水高氯酸鎂。按順序將凈化系統各容器連接好。
2) 燃燒管的填充和安裝。在燃燒管細頸端先充填約 10mm 硅酸鋁棉,然後填入約100mm 高錳酸銀熱解產物,最後再充填約 10mm 硅酸鋁棉。將帶推棒的橡皮塞塞住燃燒管入口端並將燃燒管放入燃燒爐內,使裝填部分的位置在催化段。
3) 電解池塗膜及五氧化二磷膜的生成。先用外徑約 5mm 的軟毛刷和洗滌劑清洗電解池內壁,然後依次用自來水、蒸餾水沖洗,最後用丙酮或無水乙醇清洗並用熱風吹乾。此時,電解池兩鉑極間電阻應為無窮大。
將電解池前端向上豎起,從前端滴入塗液。塗液沿池內壁流下,當塗液流到池體 1/3處時,立即倒轉電解池,使多餘的塗液流出,並用濾紙拭凈池口。邊轉動電解池,邊用冷風吹至無丙酮氣味。以同樣方法塗液 3 次,但第2 次使塗液流到池體的2/3 處時,倒出多餘塗液; 第 3 次使塗液流到距池體尾端約 10mm 處時,倒出多餘的塗液。
接通氧氣,調節氧氣流量約為 80mL/min。用硅橡膠管將塗液後的電解池與燃燒管細頸埠對口連接。裝好電解池冷卻水套,通入冷卻水,將電解池兩電極與電解電源引線相接。選擇 10V 電壓,啟動電解,每隔 3min 改變電解電源極性 1 次,直至電解終點。選擇24V 電壓啟動電解,直至電解終點; 改變電解電源極性,啟動電解,至電解終點。如此重復 4~5 次,五氧化二磷膜形成完畢; 或按塗膜鍵自動塗膜。
4) 吸收系統各容器的充填和連接。把按要求准備的吸收系統各容器按順序連接好,氧氣凈化系統與燃燒管間以聚氯乙烯軟管或聚四氟乙烯管連接,電解池與 U 型管及 U 型管與 U 型管間均以硅橡膠管連接。當出現下列現象時,應更換 U 型管中試劑,或清洗電解池: 某次試驗後,第 2 個吸收二氧化碳 U 型管的質量增加 50mg 以上時,應更換第 1 個U 型管; 二氧化錳、無水高氯酸鎂或無水氯化鈣一般使用約 100 次應更換。電解池使用100 次左右或發現電解池有拖尾等現象時,應清洗電解池,重新塗膜。
5) 測定儀整個系統的氣密性檢查。將儀器按圖73.40 所示連接好。將所有 U 型管磨口塞旋開,與儀器相連,接通氧氣下調節氧氣流量約為 80mL/min。然後關閉靠近氣泡計處 U 型管磨口塞,此時若氧氣流量降至 20mL/min 以下,表明整個系統氣密; 否則,應逐個檢查 U 型管的各個磨口塞,查出漏氣處,予以解決。氣密性檢查時間不宜過長,以免 U型管磨口塞因系統壓力過大而彈開。
6) 測定儀可靠性的檢驗。為了檢查測定儀是否可靠,可稱取 0.070~ 0.075g 標准煤樣 (精確至 0.0001g) 進行碳、氫測定。如果實測的碳、氫值與標准值的差值不超過標准煤樣規定的不確定度,並且無明顯系統偏差,表明測定儀可用,否則需查明原因並糾正後才能進行正式測定。
分析步驟
選定電解電源極性 (每天應互換 1 次) ,通入氧氣並將流量調節約為 80mL/min,接通冷卻水,通電升溫。升溫同時,接上吸收二氧化碳 U 型管 (應先將 U 型管磨口塞開啟)和氣泡計,使氧氣流量保持約 80mL/min,按下電解鍵 (或預處理鍵) 至終點。然後,每隔 2~3min 按一次電解鍵 (或預處理鍵) 。10min 後取下吸收二氧化碳 U 型管,關閉所有U 型管磨口塞,在天平旁放置 10min 左右,稱量。然後再與系統相連,重復上述試驗,直到兩個吸收二氧化碳 U 型管質量變化不超過 0.0005g 為止。
將燃燒爐、凈化爐和催化爐溫度控制在指定溫度。將煤樣以轉瓶法混和均勻,在預先灼燒過的燃燒舟中稱取 0.070~0.075g (精確至 0.0001g) 粒度小於 0.2mm 的空氣乾燥煤樣,並均勻鋪平。在煤樣上蓋一層三氧化鎢。如不立即測定,可把燃燒舟暫存入不帶乾燥劑的密閉容器中。
接上質量恆定的吸收二氧化碳 U 型管,保持氧氣流量約 80mL/min,啟動電解至電解終點。打開帶有鎳鉻絲推棒的橡皮塞,迅速將燃燒舟放入燃燒管入口端,塞上帶推棒的橡皮塞,將氫積分值和時間計數器清零。用推棒推動燃燒舟,使其一半進入燃燒爐口。煤樣燃燒後 (一般 30s) ,按電解鍵 (或測定鍵) ,當煤樣燃燒平穩,將全舟推入爐口,停留2min 左右,再將燃燒舟推入高溫帶並立即拉回推棒 (不要讓推棒紅熱部分拉到近橡皮塞處,以免使橡皮塞過熱分解) 。約 10min 後 (電解達到終點,否則需適當延長時間) ,取下吸收二氧化碳 U 型管,關閉其磨口塞,在天平旁放置約10min 後稱量。第2 個吸收二氧化碳 U 形管質量變化小於 0.0005g,計算時忽略。記錄電量積分器顯示的氫的質量 (mg) 。打開帶推棒的橡皮塞,用鎳鉻絲鉤取出燃燒舟,塞上帶推棒的橡皮塞。
空白值的測定。氫空白值的測定可與吸收二氧化碳 U 型管的恆量試驗同時進行,也可在碳氫測定之後進行。在燃燒爐、凈化爐和催化爐達到指定溫度後,保持氧氣流量約為80mL / min,啟動電解到終點。在一個預先灼燒過的燃燒舟中加入三氧化鎢 (數量與煤樣分析時相當) ,打開帶推棒的橡皮塞,放入燃燒舟,塞緊橡皮塞。將氫積分值和時間計數清零。用推棒直接將燃燒舟推到高溫帶,立即拉回推棒。按空白鍵或9min 後按下電解鍵。到達電解終點後,記錄電量積分器顯示的氫質量 (mg) 。重復上述操作,直至相鄰兩次空白測定值相差不超過 0.050mg,取這兩次測定的平均值作為當天氫的空白值。
對於微計算機控制的測定儀可按照說明書規定的方法操作。
按下式計算空氣乾燥基煤樣的碳氫含量:
岩石礦物分析第四分冊資源與環境調查分析技術
式中:Cad為空氣乾燥煤樣中碳的質量分數,%;Had為空氣乾燥煤樣中氫的質量分數,%;m為空氣乾燥煤樣的質量,g;m1為吸收二氧化碳U型管的增量,g;m2為電量積分器顯示的氫值,mg;m3為電量積分器顯示的氫空白值,mg;0.2729為將二氧化碳換算成碳的因數;0.1119為將水換算成氫的因數;Mad為空氣乾燥煤樣水分的質量分數。
當需要測定有機碳時,按式(73.71)計算有機碳的含量。
3. 農葯殘留物的分析方法
國外醫學衛生學分冊
1998年 第25卷 第3期
食物中農葯殘留分析方法的研究進展
中國預防醫學科學院營養與食品衛生研究所 (北京 100050)
趙雲峰綜述 陳建民1 王緒卿審校
摘要 本文綜述了近年來農葯殘留分析的前處理技術和測定方法的研究進展,著重介紹固相萃取法、凝膠滲透色譜法和超臨界流體萃取法等前處理技術及氣相色譜-質譜法、液相色譜-質譜法、超臨界流體色譜法等色譜測定方法以及毛細管電泳和生物技術在農葯殘留分析中的應用。
關鍵詞 食物 農葯殘留 多殘留分析方法
食品的農葯殘留分析是在復雜的基質中對目標化合物進行鑒別和定量。由於食品中農葯殘留水平一般在mg/kg~μg/kg之間,因此要求分析方法靈敏度高、特異性強。對於未知農葯施用史的食物樣品,經常採用多組分殘留分析的方法。由於各類食物樣品組成成分復雜,而且不同農葯品種的理化性質存在差異,因而沒有一種多組分殘留分析方法能夠覆蓋所有的農葯品種。
近年來,農葯殘留分析方法趨向於選擇性強、解析度高和檢測限低以及操作簡便。主要表現在由單一種類農葯多殘留分析向多品種農葯多殘留分析發展,而且對農葯的代謝物、降解物以及軛合物的殘留分析給予了更多的關注[1]。本文簡要綜述近幾年來農葯殘留分析技術及方法學的進展。
1 食物中農葯殘留的特點及樣品前處理技術食物樣品組成復雜,基質成分與目標物含量相差懸殊,且存在農葯的同系物、異構體、降解產物、代謝產物以及軛合物的影響。由於環境的遷移作用,環境中殘留的各種化學污染物也可能在農作物組織中蓄積,從而增加了食品農葯殘留分析的難度。農葯殘留測定之前要有適合於各種食品和目標物理化性質的萃取、凈化、濃縮等預處理步驟,這些預處理過程往往在分析中起著主要作用。食物樣品中農葯提取、凈化等前處理方法有其特殊性,對於不同性質樣品中的不同目標物需要採用不同的前處理技術。
食品農葯殘留分析中,食物樣品的凈化要盡可能的除去與目標物同時存在的雜質,以減少色譜圖中的干擾峰,同時避免雜質對色譜柱和檢測器的污染。食物樣品的凈化,尤其是含脂質較多的食物樣品凈化,一直是分析工作者研究的重點,除採用常規的吸附柱分離、液-液分配、共沸蒸餾等凈化措施外,更多的採用現代分離分析技術。
在農葯殘留分析技術發展的歷程中,對氣相色譜(gc)和液相色譜(lc)等各種儀器的分析速度、分辨能力和自動化程度進行了大量的研究,相比之下,對樣品的制備技術關注不夠。在很長的時間內,一直沿用經典的索氏提取、液-液分配、florisil、硅膠、硅藻土及氧化鋁柱色譜、共沸蒸餾等技術,盡管這些技術不需要昂貴的設備和特殊儀器,但卻是整個分析過程中最費時費力、最容易引起誤差的環節,且大量有機溶劑的使用,造成了對環境的污染。進入90年代後,樣品萃取凈化技術有了較快的發展,最受普遍重視的如固相萃取法(spe)、凝膠滲透色譜法(gpc)及超臨界流體萃取法(sfe),得到不斷改進和應用。為此,樣品前處理技術的研究成為分析化學領域中最為活躍的前沿課題之一[2]。
1.1 固相萃取法自美國waters公司的sep-pak投放市場後,固相萃取法(spe)技術取得很大進步,各種c8、c18、腈基、氨基和其它特殊填料的微柱相繼得到應用。schenck[4]用florisil微柱凈化,測定食物中有機氯農葯(ocs)殘留;wan[5]簡化了植物油中ocs殘留分析時硅膠柱的凈化方法,減少了有機溶劑的使用;armishaw[6]比較了動物脂肪ocs殘留測定時,gpc、吹掃共餾、florisil柱色譜的凈化;bentabol[7]用半制備c18柱分離食用油中的ocs和有機磷農葯(ops)。gillespie[8]用多柱spe凈化植物油和牛脂中的ocs及ops,油或脂質樣品用己烷溶解後,首先經diatoma-ceousearth(extrelutqe)柱和c18鍵合硅膠(ods)微柱處理,洗脫液分為兩部分,一份濃縮後,丙酮溶解,用gc-火焰光度檢測器(fpd)測定ops,另一份經氧化鋁微柱處理,進一步除去脂質,用gc-電子捕獲檢測器(ecd)測定ocs。
1.2 凝膠滲透色譜法凝膠滲透色譜法(gpc)是一種快速的凈化技術,應用於農葯殘留分析中脂類提取物與農葯的分離,是含脂類食物樣品農葯殘留分析的主要凈化手段。stienwandter[9]總結了凝膠色譜在農葯殘留分析中的應用;李洪波[10]用交聯聚苯乙烯凝膠(ngx-01)凈化食物樣品中ops;李怡[11]用bio-beadss-x3凈化乳品中氨基甲酸酯類農葯(nmcs)。chamberlain[12]採用10%乙酸乙酯和石油醚洗脫,以bio-beadss-x3解決了脂肪和油樣的分離。hong[13]用溶劑提取,bio-beadss-x3凈化,gc-ecd-氮磷檢測器(npd)測定大豆和大米樣品25種農葯,並用gc-ms-選擇離子監測(sim)確證。florisil、氧化鋁及硅膠柱主要用於非脂質食品凈化處理,採用常規的凈化方法,不能保證極性農葯ops在脂質性食品中的定量回收。sannino[14]用bio-beadss-x3的gpc凈化方法,分析了7個脂質性食品中39種ops及其代謝產物,並進一步進行gc-ms-sim確證和定量。hop-per[15]用gpc凈化,gc測定了穀物中ops、ocs及擬除蟲菊酯;holstege[16]採用凝膠滲透色譜法凈化,進行了43種ops、17種ocs及11種nmcs多殘留分析。
1.3 超臨界流體萃取法繼超臨界流體色譜(sfc)之後,90年代出現了超臨界流體萃取技術(sfe)。常規分析時,需要用有機溶劑提取樣品,提取的樣品量為50~100g,在進行溶劑濃縮的過程中,可能使易揮發的農葯損失或使某些農葯降解。sfe的樣品用量少,樣品提取在低溫下進行,避免了農葯的損失及降解,大大提高了分析方法的可靠性,並使得分析時間縮短,排除了有機溶劑的污染。lehotay[17]建立了食品中農葯多殘留分析的sfe方法;snyder[18]在ocs和ops測定中,比較了用3%甲醇為改性劑的co2凈化與索氏提取法的效率。對於含水量高的樣品,sfe的使用受到限制,為了提高sfe的使用效率,採用凍干樣品和混合樣品,以吸收水分。valverde-garcia[19]用硫酸鎂為乾燥劑吸收樣品中的水分,以sfe提取甲胺磷;用無水硫酸鎂制備蔬菜樣品(硫酸鎂∶樣品=5∶7),用sfe提取辣椒和西紅柿中非極性和中極性農葯。sfe是食品農葯多殘留分析中具有發展前景的新技術,可以替代溶劑提取方法,但在常規分析中還未得到廣泛應用。
2 測定方法色譜法仍是農葯殘留分析的常用方法。對於揮發性農葯常用gc測定;對於揮發性差、極性和熱不穩定性的農葯則採用lc測定。目前,在農葯殘留分析中使用的方法有gc、高效液相色譜法(hplc)、氣相色譜-質譜法(gc-ms)、液相色譜-質譜法(lc-ms)、sfc及毛細管電泳法(ce)和酶聯免疫吸附測定法(elisa)等。fodor-csorba[20]綜述了食物中農葯分析的色譜方法,概括了薄層色譜法(tlc)、gc、sfc及hplc在食物樣品分析中的應用;leim[21]總結了脂類食物中有機農葯的分析方法;sharp[22]總結了穀物中ops、擬除蟲菊酯和nmcs的提取、凈化及測定方法;torres[23]總結了水果、蔬菜中農葯殘留的測定方法;宮田晶弘[24]用gc、gc-ms-電子轟擊源(ei)及gc-離子阱質譜(itms)-化學電離源(ci)測定蘋果、香蕉、小麥及大米中的41種ops、23種nmcs,並對三種方法進行了比較。色譜法在農葯殘留分析中發揮了重要的作用。
2.1 gc法和gc-ms法以非極性或弱極性為固定相的毛細管柱gc得到廣泛使用,取代了傳統的填充柱gc。gc-ms和gc-ms-ms聯用技術日臻成熟,質譜法已成為農葯殘留分析的常用方法。由於串聯質譜(ms-ms)可以減少干擾物的影響,提高儀器的靈敏度,所以ms-ms是化合物結構分析及確證的有效手段。由於gc-離子阱的串聯質譜用於農葯殘留分析時,可得到fg水平的靈敏度,所以離子阱技術將是農葯殘留分析發展的趨勢。lehotay[25]用sfe提取,gc-itms分析了水果、蔬菜中ocs、ops、氨基甲酸酯類農葯(mcs)、擬除蟲菊酯及其它農葯,共46個品種。py-lypiw[26]用gc-單離子檢測(msd)分析了18種ocs,最低檢出量為10μg/kg;valaerd-garcia[27]用gc-msd檢測了蔬菜中噻嗪酮的殘留;fillion[28]用乙腈提取水果、蔬菜樣品,鹽析分層,活性炭柱凈化,用gc-msd分析了189種農葯殘留,並用hplc的熒光檢測法測定了10種氨基甲酸酯農葯殘留。hogendoorn[29]用改良方法分析了2000個水果、蔬菜樣品中125種農葯。miyahara[30]用sfe凈化,gc-itms測定了蔬菜中五氯硝基苯(pcnb)及代謝物的殘留;採用sfe與gc-itms聯用檢測蔬菜中六氯苯(hcb)的殘留。但是,gc-itms用於常規的定量測定還有待進一步發展。
2.2 hplc法及lc-ms法對於受熱易分解或失去活性的物質,不能直接或不適合用gc分析。正是由於許多有機化合物的強極性、熱不穩定性、高分子量和低揮發性等原因,從而推動了液相色譜技術的進步。
農葯殘留分析中,通常使用c8及c18反相高效液相色譜法,而以硅膠、腈基、氨基為極性鍵合相的色譜柱則用於特定的分析;短柱或小口徑柱可提高分析速度。除採用固定波長或可變波長的紫外檢測器外,二極體矩列紫外檢測器和質譜檢測器可用於結構鑒定。
hplc與sfe聯用可以提高分析方法的選擇性,並使凈化與分析過程結合,減少中間步驟造成被分析組分的丟失。hplc與ms聯用研究起步於70年代,與gc-ms相比,lc-ms的銜接更為復雜,目前lc-ms聯用已出現多種介面方式,如電噴霧介面(es)、熱噴霧介面(ts)、離子噴霧介面(is)、大氣壓化學電離介面(apci)以及粒子束介面(pb)。lc與快原子轟擊質譜(fab-ms)以及傅立葉變換紅外光譜聯用技術(ftir)在農葯殘留分析中也得到應用。
hplc和lc-ms廣泛應用於不易揮發及熱不穩定化合物的分析,是農葯殘留定性、定量分析的有效手段,尤其是氨基甲酸酯農葯(mcs)的檢測。yang[31]總結了nmcs殘留分析的進展;krause[32]建立了氨基甲酸酯的熒光測定法,食物樣品用甲醇提取,乙腈-二氯甲烷液液分配,活性炭-celite柱凈化,反相lc分離,鄰苯二醛衍生,檢測限為5~50μg/kg,結果用ms確證。seiber[33]採用perfluorracyl衍生,分析了穀物中的氨基甲酸酯;lau[34]用trifluoroacetyl衍生分析了穀物中的混殺威;bakowski[35]用heptafluo-robutyryl衍生,用gc-eims測定了肝組織中10種苯基-n-甲基氨基甲酸酯;ali[36]對牛肉、豬肉和家禽組織的氨基甲酸酯進行分析。liu[37]等用lc-ms對水果、蔬菜中的涕滅威、增效碸等19種農葯進行檢測,檢測限為0.025~1mg/kg。newsome[38]比較了lc-apci-ms和lc-柱後衍生熒光法測定食品中nmcs,在10~100μg/kg范圍內,兩種檢測器的檢測結果良好,但由於兩種均為非特異性檢測器,都存在基質干擾,為了准確測定含量,應使用高分辨的ms進行確證。
2.3 sfc方法sfc是以超臨界流體為流動相的色譜方法。超臨界流體既具有液體的強溶解性能,適合於分離揮發性差和熱不穩定的物質;又具有氣體的低粘度和高擴散性能,傳質速度快,使得分析速度提高;同時,sfc可以使用gc或hplc的檢測器以及與ms、傅立葉變換紅外光譜儀(ftir)聯用。毛細管超臨界流體色譜(csfc)的進展,促進了sfc技術的進步。csfc-ms是近年來發展的聯用技術,由於csfc克服了gc和lc的不足且具有二者的優點,所以csfc-ms聯用較gc-ms和lc-ms聯用有更多的優越性。csfc-ms主要用於大分子量、熱不穩定的復雜混合物分析,尤其對熱不穩定的物質,不能用gc直接分析,而lc的選擇性和靈敏度又不夠,如採用csfc-ms,可較方便地分離檢測。農葯中含有s、p等雜原子時,極性較強,用gc和lc難於分析,痕量分析尤為困難。採用cs-fc結合選擇性強的檢測器,如fpd、npd、ecd等,是農葯痕量分析的理想方法。在co2中添加1%甲醇作為改性劑,使極性農葯得到很好地分離,消除了色譜峰的拖尾。但是農葯殘留分析中,sfc主要用於非極性或弱極性的物質,如何分析極性物質,將是今後的研究方向[39]。
2.4 tlc方法tlc無需特殊設備,簡便易行,可同時分析多個樣品,多用於復雜混合物的分離和篩選。tlc除用特殊的顯色劑觀察斑點顏色和用rf值定性外,與其它技術的聯用不僅可以定性,而且可對樣品中被分離的一種或多種成分進行定量分析。80年代發展起來的高效薄層色譜法(hptlc)與掃描技術結合,是一種易於建立和掌握的半定量技術。歐盟國家採用自動化多通道展開技術,用hptlc定量篩選了飲水中256種農葯殘留。
2.5 ce方法由於ce具有分離效率高、快速、樣品用量少等特點,近年來得到了迅速發展,各種分離模式相繼建立,高性能的商品儀器不斷推向市場。對於無電荷的分子,開發了膠束電動色譜法(mekc),拓寬了ce的應用范圍。毛細管電泳與質譜聯用(ce-ms)可用於穀物和其它基質中帶電荷基團的農葯及其代謝物殘留檢測。ce可與原子分光光度法聯用[2],如與原子吸收分光光度計(aas)、電感耦合等離子體-原子發射光譜儀(icp-aes)和icp-ms聯用。cancalon[40]綜述了ce和ce-ms在農葯殘留分析中的應用。
2.6 生物技術生物技術在農葯殘留分析中的應用不斷增加,尤其是乳製品工業[41]。生物技術包括免疫測定法、生物測定法和生物感測器技術及免疫親和色譜法。免疫測定法取決於抗體與底物的相互作用,目標物與抗體結合後,酶促反應產生顏色變化,用比色法測定目標物濃度。kramer[42]總結了生物感測器和免疫感測器的構件、技術特點及其應用。
抗體與抗原的特異結合為農葯殘留分析提供了技術保證,許多市售試劑盒的應用,使免疫測定成為各類農葯殘留檢測的有效手段,使農葯殘留分析時間縮短,操作人員勞動負荷量減少。免疫方法常與其它技術聯用[43],如elisa與傳統的提取和凈化方法、sfe、hplc及gc-ms聯用;免疫親和色譜法與ms聯用以及在機器人輔助下自動的免疫化學方法都有應用報道。有報道[41]用sfe-elisa分析了大麥中殺螟硫磷、甲基毒死蜱及甲基嘧啶磷;用hplc-elisa測定水果、蔬菜中噻菌靈。由於免疫分析成本低、快速、可靠,且感測器靈敏度高,並有自動化裝置,因而廣泛用於農葯殘留的監測及人與環境接觸等研究。
3 結 語
隨著各種新技術的應用,農葯殘留分析方法日趨系統化、規范化,並向小型化、自動化方向發展。同時,由於在線聯用技術可避免樣品轉移的損失,減少各種人為的偶然誤差,因此將是農葯殘留分析方法研究的重點。