① 數據分析有哪些方法
現在的走勢就是我們進入了一個大數據時代,有了數據我們該分析嗎?數據分析的方法是什麼?
一、說明統計
描述性統計是統計方法的總結,揭示了數據分布的特性.主要包括數據頻率分析、數據集中趨勢分析、數據分散程度分析、數據分布和一些基本統計圖形.
1、缺失值填充:常用方法有去除法、平均法、決策樹法.
2、正態檢查:許多統計方法要求數值服從或接近正態分布,因此在進行數據分析前需要正態檢查.常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法.
二、回歸分析
回歸分析是應用極為廣泛的數據分析方法之一.根據觀測數據建立變數之間的適當依賴關系,分析數據的內在規律.
1.一元線性分析
只有一個自變數x與變數y有關,x和y必須是連續變數,變數y或其差異必須遵循正態分布.
2.多元線性回歸分析
使用條件:分析多個自變數x變數y的關系,x和y必須是連續變數,變數y或其差異必須遵循正態分布.
3.Logistic回歸分擾御昌析
線性回歸模型要求變數為連續正態分布變數,自變數與變數為線性關系,但Logistic回歸模型對拆清變數分布沒有要求,一般用於變數離散時的情況.
4.其他回歸方法:非線性回歸、秩序回歸、Probit回歸、加權回歸等.
三、方差分析
使用條件:各種樣品必須是相互獨立的隨機樣品,各種樣品來自正態分布的整體各個方差相等.
1.單因素方差分析:一個試驗只有一個影響因素,或者有多個影響因素時,只分緩扒析一個因素與響應變數的關系.
2.多因素有互動差異分析:一個實驗有多個影響因素,分析多個影響因素與響應變數的關系,同時考慮多個影響因素之間的關系
3.多因素沒有互動差異分析:分析多個影響因素和反應變數的關系,但影響因素之間沒有影響關系或忽視影響關系
4.協助者的差距祈禱:傳統的差距分析有明顯的缺點,無法控制分析中存在的隨機因素,降低了分析結果的准確性.協調差分析主要是排除協調變數的影響後,對修正後的主要效果進行方差分析,結合線性回歸和方差分析的分析方法.
② 如何做數據分析
數據分析有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。
01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。
02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。
03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。
04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。
05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。
06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。
07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。
③ 常見的數據分析方法有哪些
常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理啟此解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分悄雀迅為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方歲亂向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。