Ⅰ 數學建模都要用到那些方法啊
隨著科學技術的迅速發展,數學模型這個詞彙越來越多地出現在現代人的生產、工作和社會活動中。電氣工程師必須建立所要控制的生產過程的數學模型,用這個模型對控制裝置作出相應的設計和計算,才能實現有效的過程式控制制;氣象工作者為了得到准確的天氣預報,一刻也離不開根據氣象站、氣象衛星匯集的氣壓、雨量、風速等資料建立的數學模型;生理醫學家有了葯物濃度在人體內隨時間和空間變化的數學模型,就可以分析葯物的療效,有效地指導臨床用葯;廠長經理們要是能夠根據產品的需求狀況、生產條件和成本、貯存費用等信息,籌劃出一個合理安排生產和銷售的數學模型,一定可以獲得更大的經濟效益。對於廣大的科學技術人員和應用數學工作者來說,建立數學模型是溝通擺在面前的實際問題與他們掌握的數學工具之間的一座必不可少的橋梁。
那麼,什麼是數學模型,又是如何建立起這些形形色色的數學模型的呢?就讓我們走近數學模型看一看吧!
原型與模型
原型(Prototype):人們在現實世界裡關心、研究或者生產、管理的實際對象。
模型(Model):為特定的目的,將原型的某一部分信息簡縮、提煉而構造的原型替代物。
數學模型:對於現實世界的一個特定對象,為了一個特定目的,根據特有的內在規律,做出一些必要的簡化假設,運用適當的數學工具,得到的一個數學結構。
注意數學模型(Mathematical Model)與數學建模(Mathematical Modelling)之間的聯系與區別。
建立數學模型的方法
一般說來建立數學模型可以分為表述、求解、解釋、驗證幾個階段,並且通過這些階段完成從現實對象到數學模型,再從數學模型回到現實對象。建立數學模型沒有固定的模式。一般這一過程可以如圖所示的幾個步驟:
數學模型的分類
基於不同的出發點可以有各種不同的分法:
按照模型的應用領域分:如人口模型、交通模型、環境模型、生態模型、城鎮規劃模型、水資源模型、再生資源利用模型、污染模型等。范疇更大一些則形成許多邊緣學科如生物數學、醫學數學、地質數學、數量經濟學、數學社會學等。
按照建立模型的方法分:如初等數學模型、幾何模型、微分方程模型、圖論模型、馬氏鏈模型、規劃論模型等。
按照模型的表現特性又有幾種分法:
確定行模型和隨機性模型 取決於是否考慮隨機因素的影響。近幾年來隨著數學的發展,又有所謂突變性模型和模糊性模型。
靜態模型和動態模型 取決於是否考慮隨機因數引起的變化。
離散模型和連續模型 指模型中的變數(主要是時間變數)取為離散是連續的。
線性模型和連續模型 取決於模型的基本關系,如微分方程是否是的。
按照建模目的分。有描述模型、分析模型、預報模型、優化模型、決策模型、控制模型等。
按照對模型的了解程度分。有所謂白箱模型、灰箱模型、黑箱模型等。它們分別意
味著人們對原型的內在機理了解清楚、不太清楚和不清楚。
數學模型的作用
數學是研究現實世界中的數量關系和空間形式的科學。它的產生和許多重大發展都和現實世界的生產活動和其他相應的學科的需要密切相關的。一般的說,當實際問題需要我們對所研究的現實對象提供分析、預報、決策、控制等方面的定量結果時,往往都離不開數學的應用,而建立數學模型則是這個過程的關鍵環節。
分析 通常是指定量研究現實對象的某種現象,或定量描述某種特性。例如 研究不同種群的生物在同一自然環境下生存時,相互競爭和依存的現象;描述葯物濃度在人體內的變化規律以分析葯物的療效。
預報 一般是根據對象的固有特性預測當時間或環境變化時對象的發展規律。人口預報、天氣預報以及傳染病蔓延高潮時刻的預報可以作為這方面的例子。
決策 其含義很廣,譬如根據對象滿足的規律作出使某個數量指標達到最優的決策。使經濟效益最大的價格策略,使總費用最少的設備維修方案都是這類決策。
控制 一般是指根據對象的特徵和某些指標給出盡可能滿意的控制方案。例如化工生產過程中溫度和流量的控制,利用紅綠燈對交流進行控制等
數學建模(mathematical modelling)
數學建模是構造刻劃客觀事物原型的數學模型並用析究和解決實際問題的種方法。運用這種科學方法,建模者必須從實際問題出發,遵循「實踐――認識――實踐」的辨證唯物主義認識規律,緊緊圍繞著建模的目的,運用觀察力、想像力和邏輯思維,對問題進行抽象、簡化,反復探索、逐步完善,直到構造出一個能夠用於分析、研究和解決實際問題的數學模型。因此,數學建模不僅僅是一種定量解決實際問題的科學方法,而且還是一種從無到有的創新活動過程。當代計算機的發展和廣泛應用,使得數學模型的方法如虎添翼,加速了數學向各個學科的滲透,產生了眾多的邊緣學科。當今幾乎所有重要的學科,只要在其名稱前面或後面加上「數學」或「計算」二字,就成了現有的一種國際學術雜志名稱。這表明各學科正在利用數學方法和數學成果來加速本學科的發展。就連計算機本身的產生和進步也是強烈地依賴於數學科學的發展,而計算機軟體技術說到底也是數學技術。
引用絕對嚇人的文字
Ⅱ 數學建模-方法合集
線性規劃(Linear programming,簡稱LP)是運籌學中研究較早、發展較快、應用廣泛、方法較成熟的一個重要分支,它是輔助人們進行科學管理的一種數學方法。研究線性約束條件下線性目標函數的極值問題的數學理論和方法。英文縮寫LP。它是運籌學的一個重要分支,廣泛應用於軍事作戰、經濟分析、經營管理和工程技術等方面。為合理地利用有限的人力、物力、財力等資源作出的最優決策,提供科學的依據。
0-1規劃是決策變數僅取值0或1的一類特殊的整數規劃。在處理經濟管理中某些規劃問題時,若決策變數採用 0-1變數即邏輯變數,可把本來需要分別各種情況加以討論的問題統一在一個問題中討論。
蒙特卡羅法(Monte Carlo method)是以概率與統計的理論、方法為基礎的一種計算方法,蒙特卡羅法將所需求解的問題同某個概率模型聯系在一起,在電子計算機上進行隨機模擬,以獲得問題的近似解。因此,蒙特卡羅法又稱隨機模擬法或統計試驗法。
在生活中經常遇到這樣的問題,某單位需完成n項任務,恰好有n個人可承擔這些任務。由於每人的專長不同,各人完成任務不同(或所費時間),效率也不同。於是產生應指派哪個人去完成哪項任務,使完成n項任務的總效率最高(或所需總時間最小)。這類問題稱為指派問題或分派問題。
無約束最優化方法是求解無約束最優化問題的方法,有解析法和直接法兩類。
解析法
解析法就是利用無約束最優化問題中目標函數 f(x) 的解析表達式和它的解析性質(如函數的一階導數和二階導數),給出一種求它的最優解 x 的方法,或一種求 x 的近似解的迭代方法。
直接法
直接法就是在求最優解 x*的過程中,只用到函數的函數值,而不必利用函數的解析性質,直接法也是一種迭代法,迭代步驟簡單,當目標函數 f(x) 的表達式十分復雜,或寫不出具體表達式時,它就成了重要的方法。
可用來解決管路鋪設、線路安裝、廠區布局和設備更新等實際問題。基本內容是:若網路中的每條邊都有一個數值(長度、成本、時間等),則找出兩節點(通常是源節點和阱節點)之間總權和最小的路徑就是最短路問題。 [1]
例如:要在n個城市之間鋪設光纜,主要目標是要使這 n 個城市的任意兩個之間都可以通信,但鋪設光纜的費用很高,且各個城市之間鋪設光纜的費用不同,因此另一個目標是要使鋪設光纜的總費用最低。這就需要找到帶權的最小生成樹
管道網路中每條邊的最大通過能力(容量)是有限的,實際流量不超過容量。
最大流問題(maximum flow problem),一種組合最優化問題,就是要討論如何充分利用裝置的能力,使得運輸的流量最大,以取得最好的效果。求最大流的標號演算法最早由福特和福克遜與與1956年提出,20世紀50年代福特(Ford)、(Fulkerson)建立的「網路流理論」,是網路應用的重要組成成分。
最小費用最大流問題是經濟學和管理學中的一類典型問題。在一個網路中每段路徑都有「容量」和「費用」兩個限制的條件下,此類問題的研究試圖尋找出:流量從A到B,如何選擇路徑、分配經過路徑的流量,可以在流量最大的前提下,達到所用的費用最小的要求。如n輛卡車要運送物品,從A地到B地。由於每條路段都有不同的路費要繳納,每條路能容納的車的數量有限制,最小費用最大流問題指如何分配卡車的出發路徑可以達到費用最低,物品又能全部送到。
旅行推銷員問題(英語:Travelling salesman problem, TSP)是這樣一個問題:給定一系列城市和每對城市之間的距離,求解訪問每一座城市一次並回到起始城市的最短迴路。它是組合優化中的一個NP困難問題,在運籌學和理論計算機科學中非常重要。
最早的旅行商問題的數學規劃是由Dantzig(1959)等人提出,並且是在最優化領域中進行了深入研究。許多優化方法都用它作為一個測試基準。盡管問題在計算上很困難,但已經有了大量的啟發式演算法和精確方法來求解數量上萬的實例,並且能將誤差控制在1%內
計劃評審法(Program Evaluation and Review Technique,簡稱PERT),是指利用網路分析制訂計劃以及對計劃予以評價的技術。它能協調整個計劃的各道工序,合理安排人力、物力、時間、資金,加速計劃的完成。在現代計劃的編制和分析手段上,PERT被廣泛使用,是現代化管理的重要手段和方法。
關鍵路線法(Critical Path Method,CPM),又稱關鍵線路法。一種計劃管理方法。它是通過分析項目過程中哪個活動序列進度安排的總時差最少來預測項目工期的網路分析。
人口系統數學模型,用來描述人口系統中人的出生、死亡和遷移隨時間變化的情況,以及它們之間定量關系的數學方程式或方程組,又稱人口模型。
初值問題是指在自變數的某值給出適當個數的附加條件,用來確定微分方程的特解的這類問題。
如果在自變數的某值給出適當個數的附加條件,用來確定微分方程的特解,則這類問題稱為初值問題。
邊值問題是定解問題之一,只有邊界條件的定解問題稱為邊值問題。二階偏微分方程(組)一般有三種邊值問題:第一邊值問題又稱狄利克雷問題,它的邊界條件是給出未知函數本身在邊界上的值;第二邊值問題又稱諾伊曼邊值問題或斜微商問題,它的邊界條件是給出未知函數關於區域邊界的法向導數或非切向導數;第三邊值問題又稱魯賓問題,它的邊界條件是給出未知函數及其非切向導數的組合
目標規劃是一種用來進行含有單目標和多目標的決策分析的數學規劃方法。線性規劃的一種特殊類型。它是在線性規劃基礎上發展起來的,多用來解決線性規劃所解決不了的經濟、軍事等實際問題。它的基本原理、數學模型結構與線性規劃相同,也使用線性規劃的單純形法作為計算的基礎。所不同之處在於,它從試圖使目標離規定值的偏差為最小入手解題,並將這種目標和為了代表與目標的偏差而引進的變數規定在表達式的約束條件之中。
時間序列(或稱動態數列)是指將同一統計指標的數值按其發生的時間先後順序排列而成的數列。時間序列分析的主要目的是根據已有的歷史數據對未來進行預測。
支持向量機(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等於1995年首先提出的,它在解決小樣本、非線性及高維模式識別中表現出許多特有的優勢,並能夠推廣應用到函數擬合等其他機器學習問題中。
在機器學習中,支持向量機(SVM,還支持矢量網路)是與相關的學習演算法有關的監督學習模型,可以分析數據,識別模式,用於分類和回歸分析。
聚類分析法是理想的多變數統計技術,主要有分層聚類法和迭代聚類法。 聚類分析也稱群分析、點群分析,是研究分類的一種多元統計方法。
例如,我們可以根據各個銀行網點的儲蓄量、人力資源狀況、營業面積、特色功能、網點級別、所處功能區域等因素情況,將網點分為幾個等級,再比較各銀行之間不同等級網點數量對比狀況。
成分分析(Principal Component Analysis,PCA), 是一種統計方法。通過正交變換將一組可能存在相關性的變數轉換為一組線性不相關的變數,轉換後的這組變數叫主成分。
在實際課題中,為了全面分析問題,往往提出很多與此有關的變數(或因素),因為每個變數都在不同程度上反映這個課題的某些信息。
主成分分析首先是由K.皮爾森(Karl Pearson)對非隨機變數引入的,爾後H.霍特林將此方法推廣到隨機向量的情形。信息的大小通常用離差平方和或方差來衡量。
因子分析是指研究從變數群中提取共性因子的統計技術。最早由英國心理學家C.E.斯皮爾曼提出。他發現學生的各科成績之間存在著一定的相關性,一科成績好的學生,往往其他各科成績也比較好,從而推想是否存在某些潛在的共性因子,或稱某些一般智力條件影響著學生的學習成績。因子分析可在許多變數中找出隱藏的具有代表性的因子。將相同本質的變數歸入一個因子,可減少變數的數目,還可檢驗變數間關系的假設。
判別分析又稱「分辨法」,是在分類確定的條件下,根據某一研究對象的各種特徵值判別其類型歸屬問題的一種多變數統計分析方法。
其基本原理是按照一定的判別准則,建立一個或多個判別函數,用研究對象的大量資料確定判別函數中的待定系數,並計算判別指標。據此即可確定某一樣本屬於何類。
當得到一個新的樣品數據,要確定該樣品屬於已知類型中哪一類,這類問題屬於判別分析問題。
對互協方差矩陣的一種理解,是利用綜合變數對之間的相關關系來反映兩組指標之間的整體相關性的多元統計分析方法。它的基本原理是:為了從總體上把握兩組指標之間的相關關系,分別在兩組變數中提取有代表性的兩個綜合變數U1和V1(分別為兩個變數組中各變數的線性組合),利用這兩個綜合變數之間的相關關系來反映兩組指標之間的整體相關性。
對應分析也稱關聯分析、R-Q型因子分析,是近年新發展起來的一種多元相依變數統計分析技術,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。
對應分析主要應用在市場細分、產品定位、地質研究以及計算機工程等領域中。原因在於,它是一種視覺化的數據分析方法,它能夠將幾組看不出任何聯系的數據,通過視覺上可以接受的定點陣圖展現出來。
多維標度法是一種將多維空間的研究對象(樣本或變數)簡化到低維空間進行定位、分析和歸類,同時又保留對象間原始關系的數據分析方法。
在市場營銷調研中,多維標度法的用途十分廣泛。被用於確定空間的級數(變數、指標),以反映消費者對不同品牌的認知,並且在由這些維構築的空間中,標明某關注品牌和消費者心目中理想品牌的位置。
偏最小二乘法是一種數學優化技術,它通過最小化誤差的平方和找到一組數據的最佳函數匹配。 用最簡的方法求得一些絕對不可知的真值,而令誤差平方之和為最小。 很多其他的優化問題也可通過最小化能量或最大化熵用最小二乘形式表達。
系統介紹了禁忌搜索演算法、模擬退火演算法、遺傳演算法、蟻群優化演算法、人工神經網路演算法和拉格朗日鬆弛演算法等現代優化計算方法的模型與理論、應用技術和應用案例。
禁忌(Tabu Search)演算法是一種元啟發式(meta-heuristic)隨機搜索演算法,它從一個初始可行解出發,選擇一系列的特定搜索方向(移動)作為試探,選擇實現讓特定的目標函數值變化最多的移動。為了避免陷入局部最優解,TS搜索中採用了一種靈活的「記憶」技術,對已經進行的優化過程進行記錄和選擇,指導下一步的搜索方向,這就是Tabu表的建立。
模擬退火演算法來源於固體退火原理,是一種基於概率的演算法,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最後在常溫時達到基態,內能減為最小。
傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。遺傳演算法是從代表問題可能潛在的解集的一個種群(population)開始的,而一個種群則由經過基因(gene)編碼的一定數目的個體(indivial)組成。每個個體實際上是染色體(chromosome)帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因組合,它決定了個體的形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。因此,在一開始需要實現從表現型到基因型的映射即編碼工作。由於仿照基因編碼的工作很復雜,我們往往進行簡化,如二進制編碼,初代種群產生之後,按照適者生存和優勝劣汰的原理,逐代(generation)演化產生出越來越好的近似解,在每一代,根據問題域中個體的適應度(fitness)大小選擇(selection)個體,並藉助於自然遺傳學的遺傳運算元(genetic operators)進行組合交叉(crossover)和變異(mutation),產生出代表新的解集的種群。這個過程將導致種群像自然進化一樣的後生代種群比前代更加適應於環境,末代種群中的最優個體經過解碼(decoding),可以作為問題近似最優解。
The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision analysis method, which was originally developed by Hwang and Yoon in 1981[1] with further developments by Yoon in 1987,[2] and Hwang, Lai and Liu in 1993.[3] TOPSIS is based on the concept that the chosen alternative should have the shortest geometric distance from the positive ideal solution (PIS)[4] and the longest geometric distance from the negative ideal solution (NIS).[4]
TOPSIS是一種多准則決策分析方法,最初由Hwang和Yoon於1981年開發[1],1987年由Yoon進一步開發,[2]和Hwang, 1993年賴和劉。[3] TOPSIS是基於這樣一個概念,即所選擇的方案應該具有離正理想解(PIS)最短的幾何距離[4]和距負理想解(NIS)最遠的幾何距離[4]。
模糊綜合評價法是一種基於模糊數學的綜合評價方法。該綜合評價法根據模糊數學的隸屬度理論把定性評價轉化為定量評價,即用模糊數學對受到多種因素制約的事物或對象做出一個總體的評價。它具有結果清晰,系統性強的特點,能較好地解決模糊的、難以量化的問題,適合各種非確定性問題的解決。
數據包絡分析方法(Data Envelopment Analysis,DEA)是運籌學、管理科學與數理經濟學交叉研究的一個新領域。它是根據多項投入指標和多項產出指標,利用線性規劃的方法,對具有可比性的同類型單位進行相對有效性評價的一種數量分析方法。DEA方法及其模型自1978年由美國著名運籌學家A.Charnes和W.W.Cooper提出以來,已廣泛應用於不同行業及部門,並且在處理多指標投入和多指標產出方面,體現了其得天獨厚的優勢。
對於兩個系統之間的因素,其隨時間或不同對象而變化的關聯性大小的量度,稱為關聯度。在系統發展過程中,若兩個因素變化的趨勢具有一致性,即同步變化程度較高,即可謂二者關聯程度較高;反之,則較低。因此,灰色關聯分析方法,是根據因素之間發展趨勢的相似或相異程度,亦即「灰色關聯度」,作為衡量因素間關聯程度的一種方法。
主成分分析也稱主分量分析,旨在利用降維的思想,把多指標轉化為少數幾個綜合指標(即主成分),其中每個主成分都能夠反映原始變數的大部分信息,且所含信息互不重復。這種方法在引進多方面變數的同時將復雜因素歸結為幾個主成分,使問題簡單化,同時得到的結果更加科學有效的數據信息。在實際問題研究中,為了全面、系統地分析問題,我們必須考慮眾多影響因素。這些涉及的因素一般稱為指標,在多元統計分析中也稱為變數。因為每個變數都在不同程度上反映了所研究問題的某些信息,並且指標之間彼此有一定的相關性,因而所得的統計數據反映的信息在一定程度上有重疊。主要方法有特徵值分解,SVD,NMF等。
秩和比法(Rank-sum ratio,簡稱RSR法),是我國學者、原中國預防醫學科學院田鳳調教授於1988年提出的,集古典參數統計與近代非參數統計各自優點於一體的統計分析方法,它不僅適用於四格表資料的綜合評價,也適用於行×列表資料的綜合評價,同時也適用於計量資料和分類資料的綜合評價。
灰色預測是就灰色系統所做的預測
灰色預測是一種對含有不確定因素的系統進行預測的方法。灰色預測通過鑒別系統因素之間發展趨勢的相異程度,即進行關聯分析,並對原始數據進行生成處理來尋找系統變動的規律,生成有較強規律性的數據序列,然後建立相應的微分方程模型,從而預測事物未來發展趨勢的狀況。其用等時距觀測到的反應預測對象特徵的一系列數量值構造灰色預測模型,預測未來某一時刻的特徵量,或達到某一特徵量的時間。
回歸分析預測法,是在分析市場現象自變數和因變數之間相關關系的基礎上,建立變數之間的回歸方程,並將回歸方程作為預測模型,根據自變數在預測期的數量變化來預測因變數關系大多表現為相關關系,因此,回歸分析預測法是一種重要的市場預測方法,當我們在對市場現象未來發展狀況和水平進行預測時,如果能將影響市場預測對象的主要因素找到,並且能夠取得其數量資料,就可以採用回歸分析預測法進行預測。它是一種具體的、行之有效的、實用價值很高的常用市場預測方法,常用於中短期預測。
包含未知函數的差分及自變數的方程。在求微分方程 的數值解時,常把其中的微分用相應的差分來近似,所導出的方程就是差分方程。通過解差分方程來求微分方程的近似解,是連續問題離散化 的一個例子。
馬爾可夫預測法主要用於市場佔有率的預測和銷售期望利潤的預測。就是一種預測事件發生的概率的方法。馬爾科夫預測講述了有關隨機變數 、 隨機函數與隨機過程。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
中文名 神經網路演算法 外文名 Neural network algorithm