⑴ 高中數學的習題課的教學手段是什麼
先講某一類型題的做題步驟,然後講一至兩道例題並逐一對照步驟,學生有不懂之處及時提出並解答,最後布置習題讓學生自己做,有條件的話收起來上交,教師批改後總結出大部分學生出現的問題,在下一堂課講解,再有不懂的學生個別提出。
⑵ 如何有效進行數學解題教學
1、正方體展開圖
正方體有6個面,12條棱,當沿著某棱將正方體剪開,可以得到正方體的展開圖形,很顯然,正方體的展開圖形不是唯一的,但也不是無限的,事實上,正方體的展開圖形有且只有11種,11種展開圖形又可以分為4種類型:
1141型中間一行4個作側面,上下兩個各作為上下底面,共有6種基本圖。
(2)追及問題
【口訣】:
慢鳥要先飛,快的隨後追。
先走的路程,除以速度差,時間就求對。
例:姐弟二人從家裡去鎮上,姐姐步行速度為3千米/小時,先走2小時後,弟弟騎自行車出發速度6千米/小時,幾時追上?
先走的路程,為3X2=6(千米)
速度的差,為6-3=3(千米/小時)。所以追上的時間為:6/3=2(小時)。
6、和比問題
已知整體求部分。
【口訣】:
家要眾人合,分家有原則。
分母比數和,分子自己的。
和乘以比例,就是該得的。
例:甲乙丙三數和為27,甲;乙:丙=2:3:4,求甲乙丙三數。
分母比數和,即分母為:2+3+4=9;
分子自己的,則甲乙丙三數占和的比例分別為2/9,3/9,4/9。和乘以比例,所以甲數為27X2/9=6,乙數為:27X3/9=9,丙數為:27X4/9=12。
7、差比問題(差倍問題)
【口訣】:
我的比你多,倍數是因果。
分子實際差,分母倍數差。
商是一倍的,乘以各自的倍數,兩數便可求得。
例:甲數比乙數大12,甲:乙=7:4,求兩數。
先求一倍的量,12/(7-4)=4,
所以甲數為:4X7=28,乙數為:4X4=16。
8、工程問題
【口訣】:
工程總量設為1,1除以時間就是工作效率。
單獨做時工作效率是自己的,一齊做時工作效率是眾人的效率和。
1減去已經做的便是沒有做的,沒有做的除以工作效率就是結果。
例:一項工程,甲單獨做4天完成,乙單獨做6天完成。甲乙同時做2天後,由乙單獨做,幾天完成?
[1-(1/6+1/4)X2]/(1/6)=1(天)
9、植樹問題
【口訣】:
植樹多少棵,要問路如何?
直的加上1,圓的是結果。
例1:在一條長為120米的馬路上植樹,間距為4米,植樹多少棵?
路是直的。所以植樹120/4+1=31(棵)。
例2:在一條長為120米的圓形花壇邊植樹,間距為4米,植樹多少棵?
路是圓的,所以植樹120/4=30(棵)。
10、盈虧問題
【口訣】:
全盈全虧,大的減去小的;
一盈一虧,盈虧加在一起。
除以分配的差,結果就是分配的東西或者是人。
例1:小朋友分桃子,每人10個少9個;每人8個多7個。求有多少小朋友多少桃子?
一盈一虧,則公式為:(9+7)/(10-8)=8(人),相應桃子為8X10-9=71(個)
例2:士兵背子彈。每人45發則多680發;每人50發則多200發,多少士兵多少子彈?
全盈問題。大的減去小的,則公式為:(680-200)/(50-45)=96(人)則子彈為96X50+200=5000(發)。
例3:學生發書。每人10本則差90本;每人8 本則差8本,多少學生多少書?
全虧問題。大的減去小的。則公式為:(90-8)/(10-8)=41(人),相應書為41X10-90=320(本)
11、牛吃草問題
【口訣】:
每牛每天的吃草量假設是份數1,
A頭B天的吃草量算出是幾?
M頭N天的吃草量又是幾?
大的減去小的,除以二者對應的天數的差值,
結果就是草的生長速率。
原有的草量依此反推。
公式就是A頭B天的吃草量減去B天乘以草的生長速率。
將未知吃草量的牛分為兩個部分:
一小部分先吃新草,個數就是草的比率;
有的草量除以剩餘的牛數就將需要的天數求知。
例:整個牧場上草長得一樣密,一樣快。27頭牛6天可以把草吃完;23頭牛9天也可以把草吃完。問21頭多少天把草吃完。
每牛每天的吃草量假設是1,則27頭牛6天的吃草量是27X6=162,23頭牛9天的吃草量是23X9=207;
大的減去小的,207-162=45;二者對應的天數的差值,是9-6=3(天)結果就是草的生長速率。所以草的生長速率是45/3=15(牛/天);原有的草量依此反推。
公式就是A頭B天的吃草量減去B天乘以草的生長速率。所以原有的草量=27X6-6X15=72(牛/天)。
將未知吃草量的牛分為兩個部分:一小部分先吃新草,個數就是草的比率;
這就是說將要求的21頭牛分為兩部分,一部分15頭牛吃新生的草;剩下的21-15=6去吃原有的草,所以所求的天數為:原有的草量/分配剩下的牛=72/6=12(天)
12、年齡問題
【口訣】:
歲差不會變,同時相加減。
歲數一改變,倍數也改變。
抓住這三點,一切都簡單。
例1:小軍今年8 歲,爸爸今年34歲,幾年後,爸爸的年齡的小軍的3倍?
歲差不會變,今年的歲數差點34-8=26,到幾年後仍然不會變。
已知差及倍數,轉化為差比問題。26/(3-1)=13,幾年後爸爸的年齡是13X3=39歲,小軍的年齡是13X1=13歲,所以應該是5年後。
例2:姐姐今年13歲,弟弟今年9歲,當姐弟倆歲數的和是40歲時,兩人各應該是多少歲?
歲差不會變,今年的歲數差13-9=4幾年後也不會改變。
幾年後歲數和是40,歲數差是4,轉化為和差問題。則幾年後,姐姐的歲數:(40+4)/2=22,弟弟的歲數:(40-4)/2=18,所以答案是9年後。
13、余數問題
【口訣】:
余數有(N-1)個,最小的是1,最大的是(N-1)。
周期性變化時,不要看商,只要看余。
例:如果時鍾現在表示的時間是18點整,那麼分針旋轉1990圈後是幾點鍾?分針旋轉一圈是1小時,旋轉24圈就是時針轉1圈,也就是時針回到原位。
1980/24的余數是22,所以相當於分針向前旋轉22個圈,分針向前旋轉22個圈相當於時針向前走22個小時,時針向前走22小時,也相當於向後24-22=2個小時,即相當於時針向後拔了2小時。即時針相當於是18-2=16(點)。
教學方法如下:
一、講授法
講授法是教師通過簡明、生動的口頭語言向學生傳授知識、發展學生智力的方法。它是通過敘述、描繪、解釋、推論來傳遞信息、傳授知識、闡明概念、論證定律和公式,引導學生分析和認識問題。運用講授法的基本要求是:
1、講授既要重視內容的科學性和思想性,同時又要應盡可能的與學生的認知基礎發生聯系。
2、講授應注意培養學生的學科思維。
3、講授應具有啟發性。
4、講授要講究語言藝術。語言要生動形象、富有感染力,清晰、准確、簡練,條理清楚、通俗易懂,盡可能音量、語速要適度,語調要抑揚頓挫,適應學生的心理節奏。
二、討論法
討論法是在教師的指導下,學生以全班或小組為單位,圍繞教材的中心問題,各抒己見,通過討論或辯論活動,獲得知識或鞏固知識的一種教學方法。優點在於,由於全體學生都參加活動,可以培養合作精神,激發學生的學習興趣,提高學生學習的獨立性。一般在高年級學生或成人教學中採用。
三、直觀演示法
演示法是教師在課堂上通過展示各種實物、直觀教具或進行示範性實驗,讓學生通過觀察獲得感性認識的教學方法。是一種輔助性教學方法,要和講授法、談話法等教學方法結合使用。
四、練習法
練習法是學生在教師的指導下鞏固知識、運用知識、形成技能技巧的方法。在教學中,練習法被各科教學廣泛採用。練習一般可分為以下幾種:
其一,語言的練習。包括口頭語言和書面語言的練習,旨在培養學生的表達能力。
其二,解答問題的練習。包括口頭和書面解答問題的練習,旨在培養學生運用知識解決問題的能力。
其三,實際操作的練習。旨在形成操作技能,在技術性學科中占重要地位。
五、讀書指導法
讀書指導法是教師指導學生通過閱讀教科書或參考書,以獲得知識、鞏固知識、培養學生自學能力的一種方法。
六、任務驅動法
教師給學生布置探究性的學習任務,學生查閱資料,對知識體系進行整理,再選出代表進行講解,最後由教師進行總結。任務驅動教學法可以以小組為單位進行,也可以以個人為單位組織進行,它要求教師布置任務要具體,其他學生要極積提問,以達到共同學習的目的。