『壹』 請問,有限元分析的步驟是
有限元建模與分析
有限元分析(FEA)是一種預測結構的偏移與其它應力影響的過程,有限元建模(FEM)將這個結構分割成單元網格以形成實際結構的模型,每個單元具有簡單形態(如正方形或三角形)。這樣有限元程序就有了可寫出在剛度矩陣結構中控制方程方面的信息。每個單元上的未知量就是在節點上的位移,這個點就是單元元的連接點。有限元程序將這些單個單元的剛度矩陣組合起來以形成整個模型的總剛度矩陣,並給予已知力和邊界條件來求解該剛度矩陣以得出未知位移,從節點上位移的變化就可以計算出每個單元中的應力。
有限單元由假定的應變方程式導出,有些單元可假設其應變是常量,而另外一些可採用更高階的函數。利用給定單元的這些方程和實際幾何體,則可以寫出外力和節點位移之間的平衡方程。對於單元的每個節點來說,每個自由度就有一個方程,這些方程被十分便利地寫成矩陣的形式以用於計算機的演算中,這個系數的矩陣就變成了一個顯示出力對位移的關系的剛度矩陣: {F}=[K]、{d}
盡管求知量處於離散的自由度,內部方程仍被寫成表述為連續集的應變函數。這就意味著如果選擇了正確單元的話,縱然這個有限元模型有一組離散的方程,只要用有限的節點和單元也可以收斂出正確的答案。
有限元模型是解決全部結構問題的完全理想的模型。這些問題包括節點的定位,單元 ,物理的和材料的特性,載荷和邊界條件,根據分析類型的不同,如靜態結構載荷,動態的或熱力分析,這個模型就確定得不同。
一個有限元模型常常由不止一種單元類型來建立,有限元模型是以結構的偏移來建立成數學模型,而不只是在外觀上象原結構。也許某個零件用梁單元最好,而另外的零件則可能用薄殼單元最理想。
對於給定的問題來講,求解結果的准確性將取決於結構建模的好壞,負載和邊界條件的確定,以及所用單元的精度。
一般來講,如模型細分更小的單元,則求解將更准確。了解你在最終的求解結果上有充分收斂的唯一確信的方法是用更細網格的單元來建立更多的模型,以檢查求解結果的收斂性。
新的有限元用戶經常產生想像上的錯誤,即建立一個有限元模型的目的是建立一個看起來象這種結構的模型。有限元建模的目的是建立一個從數學意義是「相似」的模型,而不是一個外觀相似的模型。一個有經驗的使用者學會了怎樣選擇單元的正確類型,和在模型的不同區域中怎樣來細分網格。
一個經常忽略的錯誤根源是在一個模型中的負載和邊界條件上進行了錯誤的假設。同時也很輕易地相信一個有限元模型的每個十進位的結果。以及忘掉了在負載和邊界條件上粗糙的假設。如果有一個關於怎樣建立邊界條件模型的問題的話,寧可用你的模型以不同的方法去測試其靈敏度,而不是僅遵循一種方法,得出一種答案,
這就是說:「分析的目的在於洞察力而不是數量」。
有限元步驟
三個步驟:前處理(PREPROCESSION),求解(SOLUTION),後處理(POSTPROCESSION)
前處理包括產生一個有限元模型的幾何體的全過程,輸入物理特性,描述邊界條件和載荷,以及檢查模型。
求解過程在I-DEAS SIMULATION的模型求解模塊中進行,或在一個外部有限元分析程序中進行。I-DEAS求解能夠解答線性和非線性的,靜態的,動態的,屈曲,熱傳導和勢位能分析問題。至於其它類型的分析,有限元模型信息 對於一個外部有限元求解問題可寫成所要求的格式,如MSC。NSATRAN,ANSYS,ABAQUS等。
後處量包括標繪出偏移和應力,利用失效准則,諸如允許的最大偏移,材質的靜態和疲勞強度等等來比較這些結果,假如我們僅僅想知道零件是否能經受住載荷試驗。所有我們需要看到的只是一個是或否的答案,這不是通常那種情況。我們喜歡有能力去看到不同形式顯示的結果,這樣我們以判斷力來判斷為什麼零件失效和怎樣去改進設計。有兩個問題在後處理階段必須作出解答,那就是:模型准確嗎?結構滿意嗎?
在你的模型中,可能有許多錯誤的根源,例如,有限元網格的粗糙,所用單元的類型,或材料性質的不準確性。這就是為什麼後期處理將包括檢查那些在建立模型時不可能發覺的錯誤。你必須進行的一個基本的檢查是用某些人工的計演算法使你確信在譬如在輸入材料性質時,小數點的位置不會發生任何顯著的錯誤,也建議你在觀察應力前標繪出位移,因為位移通常比應力更為直觀。在繼續程序前確認變形的形態正確無誤。邊界條件中常的錯誤可通過細心觀察變形形態檢測出,諸如某點該動而不動,或被約束的點有不合適的斜度等,在你建模的結構方面作出判斷之前確保你的模型免除錯誤。!