1.對比分析
橫向對比:簡單的說就是和誰對比?假如說我們上個月店鋪的成交額增長了30%,那麼我們是不是應該開心呢?
這里我們還要參考競爭對手的成交額,數據時代,我們可以很輕易的拿到競爭對手的相關數據。
縱向對比:我們可以把近15天的成交額以線條的形式顯示出來,這樣就可以很清楚的看到近期的成交額是否達到預期,有沒有下降趨勢,當然我們也可以以季度、月或周為單位。
2.轉化分析
這里牽涉到一個問題,評判一家電商企業需要用到的一些日常統計指標:
店鋪的目標用戶數量:一家店鋪的成交量,反映的是這家店鋪對於市場的影響以及用戶對於產品的滿意度。
平均消費金額:店鋪每年平均每位用戶消費了多少,以此來定位目標人群,確定是否達到盈利的指標。
用戶的復購率:判別產品滿意度,假如用戶購買過一次後,還會購買第二次,說明用戶對於你的產品還是很滿意的,這樣既節省了市場推廣費用,用戶也會推薦給更多朋友來夠買。
3.留存分析
我們通過活動等形式把用戶引流到我們的流量池裡,但是經過一段時間後,用戶可能就會慢慢的流失了。那些留下來或者經常訪問我們店鋪的用戶稱之為留存。
我們常常用到的日活躍用戶量、月活躍用戶量、季度活躍用戶量,來檢測我們店鋪的流量。有的時候可能會看到我們的日活,在一段時期內都是逐漸增加的,以為是非常好的現象,但是如果沒有做留存分析的話,這個結果很可能是一個錯誤的。
留存是產品的核心,用戶只有留下來,我們的產品才能不斷增長。如果我們什麼都不做的話,用戶很快的就流失了。
4.產品比價
大部分電商公司會頻繁搞促銷,一般來說每次打的旗幟無非是全網最低,但是如何才能確定是全網最低呢?
這時候需要我們去搭建一個比價系統,這個比價系統的目的主要是為了去抓取各大電商平台商品的價格。通過各大電商平台的價格以及優惠額,來制定你自己的策略。
關於電商數據分析常用方法有哪些,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。