Ⅰ 相關性分析有哪幾種方法
在做數據分析時,為了提煉觀點,相關性分析是必不可少,而且尤為重要的一個環節。但是,對於不同類型的數據,相關性分析的方法都各不相同。本文,主要按照不同的數據類型,來對各種相關性分析方法進行梳理總結。
相關性分析是指對兩個或多個具備相關性的變數元素進行分析,相關性不等於因果性。
一、離散與離散變數之間的相關性
1、卡方檢驗
卡方檢驗是一種用途很廣的計數資料的假設檢驗方法。它屬於非參數檢驗的范疇,主要是比較兩個及兩個以上樣本率( 構成比)以及兩個分類變數的關聯性分析。其根本思想就是在於比較理論頻數和實際頻數的吻合程度或擬合優度問題。
它在分類資料統計推斷中的應用,包括:兩個率或兩個構成比比較的卡方檢驗;多個率或多個構成比比較的卡方檢驗以及分類資料的相關分析等。
(1)假設,多個變數之間不相關
(2)根據假設計算得出每種情況的理論值,根據理論值與實際值的差別,計算得到卡方值 及 自由度
df=(C-1)(R-1)
(3)查卡方表,求p值
卡方值越大,P值越小,變數相關的可能性越大,當P<=0.05,否定原假設,認為變數相關。
2、信息增益 和 信息增益率
在介紹信息增益之前,先來介紹兩個基礎概念,信息熵和條件熵。
信息熵,就是一個隨機變數的不確定性程度。
條件熵,就是在一個條件下,隨機變數的不確定性。
(1)信息增益:熵 - 條件熵
在一個條件下,信息不確定性減少的程度。
Gain(Y,X)=H(Y)-H(Y|X)
信息增益越大,表示引入條件X之後,不純度減少得越多。信息增益越大,則兩個變數之間的相關性越大。
(2)信息增益率
假設,某個變數存在大量的不同值,例如ID,引入ID後,每個子節點的不純度都為0,則信息增益減少程度達到最大。所以,當不同變數的取值數量差別很大時,引入取值多的變數,信息增益更大。因此,使用信息增益率,考慮到分支個數的影響。
Gain_ratio=(H(Y)-H(Y|X))/H(Y|X)
二、連續與連續變數之間的相關性
1、協方差
協方差,表達了兩個隨機變數的協同變化關系。如果兩個變數不相關,則協方差為0。
Cov(X,Y)=E{[X-E(X)],[Y-E(Y)]}
當 cov(X, Y)>0時,表明 X與Y 正相關;
當 cov(X, Y)<0時,表明X與Y負相關;
當 cov(X, Y)=0時,表明X與Y不相關。
協方差只能對兩組數據進行相關性分析,當有兩組以上數據時就需要使用協方差矩陣。
協方差通過數字衡量變數間的相關性,正值表示正相關,負值表示負相關。但無法對相關的密切程度進行度量。當我們面對多個變數時,無法通過協方差來說明那兩組數據的相關性最高。要衡量和對比相關性的密切程度,就需要使用下一個方法:相關系數。
2、線性相關系數
也叫Pearson相關系數, 主要衡量兩個變數線性相關的程度。
r=cov(X,Y)/(D(X)D(Y))
相關系數是用協方差除以兩個隨機變數的標准差。相關系數的大小在-1和1之間變化。再也不會出現因為計量單位變化,而數值暴漲的情況了。
線性相關系數必須建立在因變數與自變數是線性的關系基礎上,否則線性相關系數是無意義的。
三、連續與離散變數之間的相關性
1、連續變數離散化
將連續變數離散化,然後,使用離散與離散變數相關性分析的方法來分析相關性。
2、箱形圖
使用畫箱形圖的方法,看離散變數取不同值,連續變數的均值與方差及取值分布情況。
如果,離散變數取不同值,對應的連續變數的箱形圖差別不大,則說明,離散變數取不同值對連續變數的影響不大,相關性不高;反之,相關性高。
Ⅱ 兩個變數關系研究中常用的方法有哪些
兩個變數關系研究中常用的方法有很多。
它包括方差分析、 典型相關分析、判別分析、對數線性方程、對數線性模型等。
Ⅲ 分析兩個變數間關系的統計分析方法有哪些
1、把多個問題合並成一個潛在變數,再分析兩個潛在變數之間的關系。2、合並方法可用加總法,也可用均值法。
Ⅳ 如何實現兩變數之間的相關性分析
1、首先,大家平時理解的變數是單緯的,而不是你說的多維的.因此,對spss而言,X1、X2、X3、Y1、Y2、Y3分別是6個變數.
2、spss的相關性分析中可以分別統計這6個變數間的相關性.通過他們之間相關性的計算,你或許可以得到你所說的X與Y之間的相關性,但這種相關性只是你推測的定性描述而已,是不能定量描述的.
3、主成分分析,目的是將分析對象的多個維度簡化為少數幾個維度,方便分析,這樣做的前提是維度很多且其中的多個維度之間有較強的相關性.而不是你想像的可以把X1、X2、X3降維成一個變數,因為只有三個維度,已經很少了,這三個維度可以做降維分析的可能性幾乎沒有.
4、回歸分析,只有一個因變數,可以有多個自變數,最終算得因變數與自變數間的回歸關系.
估計你只是自己想像了一個例子,實際中一般是不會有這樣的分析案例的.
Ⅳ 如何分析兩個變數之間的關系應該用何種統計學方法
(1)相關分析,研究現象之間是否存在某種依存關系
(2)回歸分析,確定兩種或兩種以上變數間相互依賴的定量關系