『壹』 數據分析零基礎學習嗎
零基礎可以學習數據分析,進入數據分析行業的要求並不高,但是具備數據分析相關技能是必須的,數據分析是人人都可以學習,人人都可以進入的行業。
以下是數據分析師應該具備的相關技能,希望可以幫到你。
數學知識
對於初級數據分析師來說,則需要了解統計相關的基礎性內容,公式計算,統計模型等。當你獲得一份數據集時,需要先進行了解數據集的質量,進行描述統計。
而對於高級數據分析師,必須具備統計模型的能力,線性代數也要有一定的了解。
分析工具
對於分析工具,SQL 是必須會的,還有要熟悉Excel數據透視表和公式的使用,另外,還要學會一個統計分析工具,SAS作為入門是比較好的,VBA 基本必備,SPSS/SAS/R 至少要熟練使用其中之一,其他分析工具(如 Matlab)可以視情況而定。
編程語言
數據分析領域最熱門的兩大語言是 R 和 Python。涉及各類統計函數和工具的調用,R無疑有優勢。但是大數據量的處理力不足,學習曲線比較陡峭。Python 適用性強,可以將分析的過程腳本化。所以,如果你想在這一領域有所發展,學習 Python 也是相當有必要的。
當然其他編程語言也是需要掌握的。要有獨立把數據化為己用的能力, 這其中SQL 是最基本的,你必須會用 SQL 查詢數據、會快速寫程序分析數據。當然,編程技術不需要達到軟體工程師的水平。要想更深入的分析問題你可能還會用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
業務理解
對業務的理解是數據分析師工作的基礎,數據的獲取方案、指標的選取、還有最終結論的洞察,都依賴於數據分析師對業務本身的理解。
對於初級數據分析師,主要工作是提取數據和做一些簡單圖表,以及少量的洞察結論,擁有對業務的基本了解就可以。對於高級數據分析師,需要對業務有較為深入的了解,能夠基於數據,提煉出有效觀點,對實際業務能有所幫助。對於數據挖掘工程師,對業務有基本了解就可以,重點還是需要放在發揮自己的技術能力上。
邏輯思維
對於初級數據分析師,邏輯思維主要體現在數據分析過程中每一步都有目的性,知道自己需要用什麼樣的手段,達到什麼樣的目標。對於高級數據分析師,邏輯思維主要體現在搭建完整有效的分析框架,了解分析對象之間的關聯關系,清楚每一個指標變化的前因後果,會給業務帶來的影響。對於數據挖掘工程師,羅輯思維除了體現在和業務相關的分析工作上,還包括演算法邏輯,程序邏輯等,所以對邏輯思維的要求也是最高的。
數據可視化
數據可視化主要藉助於圖形化手段,清晰有效地傳達與溝通信息。聽起來很高大上,其實包括的范圍很廣,做個 PPT 里邊放上數據圖表也可以算是數據可視化。
對於初級數據分析師,能用 Excel 和 PPT 做出基本的圖表和報告,能清楚地展示數據,就達到目標了。對於稍高級的數據分析師,需要使用更有效的數據分析工具,根據實際需求做出或簡單或復雜,但適合受眾觀看的數據可視化內容。
協調溝通
數據分析師不僅需要具備破譯數據的能力,也經常被要求向項目經理和部門主管提供有關某些數據點的建議,所以,你需要有較強的交流能力。
對於高級數據分析師,需要開始獨立帶項目,或者和產品做一些合作,因此除了溝通能力以外,還需要一些項目協調能力。
『貳』 數據分析方法論是什麼
業務分析的目標是使用大數據為所有專業人員提供可伸縮的解決方案,以快速、高質量和高效的決策。
所有業務決策中最重要的是業務決策,這決定了如何處理數據。這是業務分析的最終目標。
『叄』 做數據分析不得不看的書有哪些
數據化管理(黃老師的書)了解數據分析的邏輯。初學要會excel 再慢慢到access sql等數據分析的工具軟體。
『肆』 如何進行大數據分析及處理
聚雲化雨的處理方式
聚雲:探碼科技全面覆蓋各類數據的處理應用。以數據為原料,通過網路數據採集、生產設備數據採集的方式將各種原始數據凝結成雲,為客戶打造強大的數據存儲庫;
化雨:利用模型演算法和人工智慧等技術對存儲的數據進行計算整合讓數據與演算法產生質變反應化雲為雨,讓真正有價值的數據流動起來;
開渠引流,潤物無聲:將落下「雨水」匯合成數據湖泊,對數據進行標注與處理根據行業需求開渠引流,將一條一條的數據支流匯合集成數據應用中,為行業用戶帶來價值,做到春風化雨,潤物無聲。
『伍』 零基礎學數據分析應該怎麼入門
數據科學是一門應用學科,需要系統提升數據獲取、數據分析、數據可視化、機器學習的水平。下面就簡單提供一個數據分析入門的路徑:
第一階段:Excel數據分析
每一位數據分析師都脫離不開Excel。excel是日常工作中最常用的工具,如果不考慮性能和數據量,可以應付絕大部分分析工作。雖然現在機器學習滿地走,Excel依舊是無可爭議的第一工具。
第二階段:SQL資料庫語言
作為數據分析人員,首先要知道如何去獲取數據,其中最常見的就是從關系型資料庫中取數,因此可以不會R,不會python,但是不能不會SQL。DT時代,數據正在呈指數級增長。Excel對十萬條以內的數據處理起來沒有問題,但是往小處說,但凡產品有一點規模,數據都是百萬起。這時候就需要學習資料庫。
第三階段:數據可視化&商業智能
數據可視化能力已經越來越成為各崗位的基礎技能。領英的數據報告顯示,數據可視化技能在歷年年中國最熱門技能中排名第一。
學習數據分析可以到CDA數據分析認證中心了解一下,CDA是大數據和人工智慧時代面向國際范圍全行業的數據分析專業人才職業簡稱,具體指在互聯網、金融、咨詢、電信、零售、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、提供決策的新型數據人才。
『陸』 如何自學數據分析
很多人都覺得,自己是文科類出身,或者對數理專業不熟悉,會很難上手數據分析。其實不是這樣子的,學習數據分析,不同於程序員,它不會專門要求我們一定要掌握編程,只是理解熟悉就可以。個人的邏輯思維能力、個人興趣所在,以及自身的決心毅力,這些才是構成一個人學成與否的關鍵和最重要因素。
小編覺得最重要的一點就是,我們得清楚企業對數據分析師的基礎技能需求是什麼。這樣我們才能有的放矢。我大抵總結如下:
(1)SQL資料庫的基本操作,會基本的數據管理
(2)會用Excel/SQL做基本的數據分析和展示
(3)會用腳本語言進行數據分析,Python or R
(4)有獲取外部數據的能力,如爬蟲
(5)會基本的數據可視化技能,能撰寫數據報告
(6)熟悉常用的數據挖掘演算法:回歸分析、決策樹、隨機森林、支持向量機等
之後,怎麼安排自己的業余時間就看個人了。總體來說,先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、你的目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
『柒』 數據分析中有哪些常見的數據模型
要進行一次完整的數據分析,首先要明確數據分析思路,如從那幾個方面開展數據分析,各方面都包含什麼內容或指標。是分析框架,給出分析工作的宏觀框架,根據框架中包含的內容,再運用具體的分析方法進行分析。
數據分析方法論的作用:
理順分析思路,確保數據分析結構體系化
把問題分解成相關聯的部分,並顯示他們的關系
為後續數據分析的開展指引方向
確保分析結果的有效性和正確性
五大數據分析模型
1.PEST分析模型
最後
五大數據分析模型的應用場景根據數據分析所選取的指標不同也有所區別。
PEST分析模型主要針對宏觀市場環境進行分析,從政治、經濟、社會以及技術四個維度對產品或服務是否適合進入市場進行數據化的分析,最終得到結論,輔助判斷產品或服務是否滿足大環境。
5W2H分析模型的應用場景較廣,可用於對用戶行為進行分析以及產品業務分析。
邏輯樹分析模型主要針對已知問題進行分析,通過對已知問題的細化分析,通過分析結論找到問題的最優解決方案。
4P營銷理論模型主要用於公司或其中某一個產品線的整體運營情況分析,通過分析結論,輔助決策近期運營計劃與方案。
用戶行為分析模型應用場景比較單一,完全針對用戶的行為進行研究分析。
當然,模型只是前人總結出的方式方法,對於我們實際工作中解決問題有引導作用,但是不可否認,具體問題還要具體分析,針對不同的情況需要進行不同的改進。
『捌』 對於數據的理解,分析,統計,監控的方法論需要看什麼書怎麼去提高
數據的這些知識是很龐大的一部分,關於數據的管理是一門很多大學開設的專業,僅僅看書時學不好的,而且現在大部分數據都是通過計算機來管理的,這就需要掌握數據結構,資料庫方面的知識,這類書網上很多,不過光看沒人指導是學不明白的。如果只是想大概了解一下,建議看一看《深入淺出數據分析》,《大數據時代》這兩本書。現在的數據處理是很高深的一門學問,如果想學好的話最好從頭到尾系統學習,還要有耐心。打字不易,望採納。
『玖』 物流的數據分析工具和方法論有哪些
線性規劃
網路規劃
最大流
最短路線
排隊論等
找本《運籌學》,上面有很多關於運營或物流的方法模型