1、系統分析法:市場是一個多要素、多層次組合的系統,既有營銷要素的結合,又有營銷過程的聯系,還有營銷環境的影響。運用系統分析的方法進行市場分析,可以使研究者從企業整體上考慮營業經營發展戰略,用聯系的、全面的和發展的觀點來研究市場的各種現象,既看到供的方面,又看到求的方面,並預見到他們的發展趨勢,從而做出正確的營銷決策。
2、比較分析法:比較分析法是把兩個或兩類事物的市場資料相比較,從而確定它們之間相同點和不同點的邏輯方法。對一個事物是不能孤立地去認識的,只有把它與其他事物聯系起來加以考察,通過比較分析,才能在眾多的屬性中找出本質的屬性。
3、結構分析法:在市場分析中,通過市場調查資料,分析某現象的結構及其各組成部分的功能,進而認識這一現象本質的方法,稱為結構分析法。市場分析的方法是這樣子的,可以供你參考。
⑵ 分析常用的方法有哪些
工作分析的方法
(一)訪談法
訪談法又稱為面談法,是一種應用最為廣泛的職務分析方法。是指工作分析人員就某一職務或者職位面對面地詢問任職者、主管、專家等人對工作的意見和看法。在一般情況下,應用訪談法時可以以標准化訪談格式記錄,目的是便於控制訪談內容及對同一職務不同任職者的回答相互比較。
(二)問卷調查法
問卷調查法是工作分析中最常用的一種方法,具體來說,由有關人員事先設計出一套職務分析的問卷,再由隨後工作的員工來填寫問卷,也可由工作分析人員填寫,最後再將問卷加以歸納分析,做好詳細的記錄,並據此寫出工作職務描述。
(三)觀察法
觀察法是一種傳統的職務分析方法,指的是工作分析人員直接到工作現場,針對特定對象(一個或多個任職者)的作業活動進行觀察,收集、記錄有關工作的內容、工作間的相互關系、人與工作的關系以及工作環境、條件等信息,並用文字或圖標形式記錄下來,然後進行分析與歸納總結的方法。
(四)工作日誌法
工作日誌法又稱工作寫實法,指任職者按時間順序詳細記錄自己的工作內容與工作過程,然後經過歸納、分析,達到工作分析的目的的一種方法。
(五)資料分析法
為降低工作分析的成本,應當盡量利用原有資料,例如責任制人本等人事文件,以對每個項工作的任務、責任、權利、工作負荷、任職資格等有一個大致的了解,為進一步調查、分析奠定基礎。
(六)能力要求法
指完成任何一項工作的技能都可由更基本的能力加以描述。
(七)關鍵事件法
關鍵事件法要求分析人員、管理人員、本崗位員工,將工作過程中的「關鍵事件」詳細地加以記錄,可在大量收集信息後,對崗位的特徵要求進行分析研究的方法(關鍵事件是使工作成功或失敗的行為特徵或事件,如成功與失敗、盈利或與虧損、高效與低產等)。
⑶ 9種常用的數據分析方法(實用干貨,強烈建議收藏)
所謂公式拆解法就是針對某個指標,用公式層層分解該指標的影響因素。
舉例:分析某產品的銷售額較低的原因,用公式法分解
對比法就是用兩組或兩組以上的數據進行比較,是最通用的方法。
我們知道孤立的數據沒有意義,有對比才有差異。比如在時間維度上的同比和環比、增長率、定基比,與競爭對手的對比、類別之間的對比、特徵和屬性對比等。對比法可以發現數據變化規律,使用頻繁,經常和其他方法搭配使用。
下圖的AB公司銷售額對比,雖然A公司銷售額總體上漲且高於B公司,但是B公司的增速迅猛,高於A公司,即使後期增速下降了,最後的銷售額還是趕超。
A/Btest,是將Web或App界面或流程的兩個或多個版本,在同一時間維度,分別讓類似訪客群組來訪問,收集各群組的用戶體驗數據和業務數據,最後分析評估出最好版本正式採用。A/Btest的流程如下:
(1)現狀分析並建立假設:分析業務數據,確定當前最關鍵的改進點,作出優化改進的假設,提出優化建議;比如說我們發現用戶的轉化率不高,我們假設是因為推廣的著陸頁面帶來的轉化率太低,下面就要想辦法來進行改進了
(2)設定目標,制定方案:設置主要目標,用來衡量各優化版本的優劣;設置輔助目標,用來評估優化版本對其他方面的影響。
(3)設計與開發:製作2個或多個優化版本的設計原型並完成技術實現。
(4)分配流量:確定每個線上測試版本的分流比例,初始階段,優化方案的流量設置可以較小,根據情況逐漸增加流量。
(5)採集並分析數據:收集實驗數據,進行有效性和效果判斷:統計顯著性達到95%或以上並且維持一段時間,實驗可以結束;如果在95%以下,則可能需要延長測試時間;如果很長時間統計顯著性不能達到95%甚至90%,則需要決定是否中止試驗。
(6)最後:根據試驗結果確定發布新版本、調整分流比例繼續測試或者在試驗效果未達成的情況下繼續優化迭代方案重新開發上線試驗。
流程圖如下:
通過對兩種及以上維度的劃分,運用坐標的方式表達出想要的價值。由價值直接轉變為策略,從而進行一些落地的推動。象限法是一種策略驅動的思維,常與產品分析、市場分析、客戶管理、商品管理等。比如,下圖是一個廣告點擊的四象限分布,X軸從左到右表示從低到高,Y軸從下到上表示從低到高。
高點擊率高轉化的廣告,說明人群相對精準,是一個高效率的廣告。高點擊率低轉化的廣告,說明點擊進來的人大多被廣告吸引了,轉化低說明廣告內容針對的人群和產品實際受眾有些不符。高轉化低點擊的廣告,說明廣告內容針對的人群和產品實際受眾符合程度較高,但需要優化廣告內容,吸引更多人點擊。低點擊率低轉化的廣告,可以放棄了。還有經典的RFM模型,把客戶按最近一次消費(Recency)、消費頻率(Frequency)、消費金額 (Monetary)三個維度分成八個象限。
通過象限分析法,將有相同特徵的事件進行歸因分析,總結其中的共性原因。例如上面廣告的案例中,第一象限的事件可以提煉出有效的推廣渠道與推廣策略,第三和第四象限可以排除一些無效的推廣渠道;
(2)建立分組優化策略
針對投放的象限分析法可以針對不同象限建立優化策略,例如RFM客戶管理模型中按照象限將客戶分為重點發展客戶、重點保持客戶、一般發展客戶、一般保持客戶等不同類型。給重點發展客戶傾斜更多的資源,比如VIP服務、個性化服務、附加銷售等。給潛力客戶銷售價值更高的產品,或一些優惠措施來吸引他們回歸。
帕累托法則,源於經典的二八法則。比如在個人財富上可以說世界上20%的人掌握著80%的財富。而在數據分析中,則可以理解為20%的數據產生了80%的效果需要圍繞這20%的數據進行挖掘。往往在使用二八法則的時候和排名有關系,排在前20%的才算是有效數據。二八法是抓重點分析,適用於任何行業。找到重點,發現其特徵,然後可以思考如何讓其餘的80%向這20%轉化,提高效果。
一般地,會用在產品分類上,去測量並構建ABC模型。比如某零售企業有500個SKU以及這些SKU對應的銷售額,那麼哪些SKU是重要的呢,這就是在業務運營中分清主次的問題。
常見的做法是將產品SKU作為維度,並將對應的銷售額作為基礎度量指標,將這些銷售額指標從大到小排列,並計算截止當前產品SKU的銷售額累計合計占總銷售額的百分比。
百分比在 70%(含)以內,劃分為 A 類。百分比在 70~90%(含)以內,劃分為 B 類。百分比在 90~100%(含)以內,劃分為 C 類。以上百分比也可以根據自己的實際情況調整。
ABC分析模型,不光可以用來劃分產品和銷售額,還可以劃分客戶及客戶交易額等。比如給企業貢獻80%利潤的客戶是哪些,佔比多少。假設有20%,那麼在資源有限的情況下,就知道要重點維護這20%類客戶。
漏鬥法即是漏斗圖,有點像倒金字塔,是一個流程化的思考方式,常用於像新用戶的開發、購物轉化率這些有變化和一定流程的分析中。
上圖是經典的營銷漏斗,形象展示了從獲取用戶到最終轉化成購買這整個流程中的一個個子環節。相鄰環節的轉化率則就是指用數據指標來量化每一個步驟的表現。所以整個漏斗模型就是先將整個購買流程拆分成一個個步驟,然後用轉化率來衡量每一個步驟的表現,最後通過異常的數據指標找出有問題的環節,從而解決問題,優化該步驟,最終達到提升整體購買轉化率的目的。
整體漏斗模型的核心思想其實可以歸為分解和量化。比如分析電商的轉化,我們要做的就是監控每個層級上的用戶轉化,尋找每個層級的可優化點。對於沒有按照流程操作的用戶,專門繪制他們的轉化模型,縮短路徑提升用戶體驗。
還有經典的黑客增長模型,AARRR模型,指Acquisition、Activation、Retention、Revenue、Referral,即用戶獲取、用戶激活、用戶留存、用戶收益以及用戶傳播。這是產品運營中比較常見的一個模型,結合產品本身的特點以及產品的生命周期位置,來關注不同的數據指標,最終制定不同的運營策略。
從下面這幅AARRR模型圖中,能夠比較明顯的看出來整個用戶的生命周期是呈現逐漸遞減趨勢的。通過拆解和量化整個用戶生命周期各環節,可以進行數據的橫向和縱向對比,從而發現對應的問題,最終進行不斷的優化迭代。
用戶路徑分析追蹤用戶從某個開始事件直到結束事件的行為路徑,即對用戶流向進行監測,可以用來衡量網站優化的效果或營銷推廣的效果,以及了解用戶行為偏好,其最終目的是達成業務目標,引導用戶更高效地完成產品的最優路徑,最終促使用戶付費。如何進行用戶行為路徑分析?
(1)計算用戶使用網站或APP時的每個第一步,然後依次計算每一步的流向和轉化,通過數據,真實地再現用戶從打開APP到離開的整個過程。
(2)查看用戶在使用產品時的路徑分布情況。例如:在訪問了某個電商產品首頁的用戶後,有多大比例的用戶進行了搜索,有多大比例的用戶訪問了分類頁,有多大比例的用戶直接訪問的商品詳情頁。
(3)進行路徑優化分析。例如:哪條路徑是用戶最多訪問的;走到哪一步時,用戶最容易流失。
(4)通過路徑識別用戶行為特徵。例如:分析用戶是用完即走的目標導向型,還是無目的瀏覽型。
(5)對用戶進行細分。通常按照APP的使用目的來對用戶進行分類。如汽車APP的用戶可以細分為關注型、意向型、購買型用戶,並對每類用戶進行不同訪問任務的路徑分析,比如意向型的用戶,他進行不同車型的比較都有哪些路徑,存在什麼問題。還有一種方法是利用演算法,基於用戶所有訪問路徑進行聚類分析,依據訪問路徑的相似性對用戶進行分類,再對每類用戶進行分析。
以電商為例,買家從登錄網站/APP到支付成功要經過首頁瀏覽、搜索商品、加入購物車、提交訂單、支付訂單等過程。而在用戶真實的選購過程是一個交纏反復的過程,例如提交訂單後,用戶可能會返回首頁繼續搜索商品,也可能去取消訂單,每一個路徑背後都有不同的動機。與其他分析模型配合進行深入分析後,能為找到快速用戶動機,從而引領用戶走向最優路徑或者期望中的路徑。
用戶行為路徑圖示例:
用戶留存指的是新會員/用戶在經過一定時間之後,仍然具有訪問、登錄、使用或轉化等特定屬性和行為,留存用戶占當時新用戶的比例就是留存率。留存率按照不同的周期分為三類,以登錄行為認定的留存為例:
第一種 日留存,日留存又可以細分為以下幾種:
(1)次日留存率:(當天新增的用戶中,第2天還登錄的用戶數)/第一天新增總用戶數
(2)第3日留存率:(第一天新增用戶中,第3天還有登錄的用戶數)/第一天新增總用戶數
(3)第7日留存率:(第一天新增用戶中,第7天還有登錄的用戶數)/第一天新增總用戶數
(4)第14日留存率:(第一天新增用戶中,第14天還有登錄的用戶數)/第一天新增總用戶數
(5)第30日留存率:(第一天新增用戶中,第30天還有登錄的用戶數)/第一天新增總用戶數
第二種 周留存,以周度為單位的留存率,指的是每個周相對於第一個周的新增用戶中,仍然還有登錄的用戶數。
第三種 月留存,以月度為單位的留存率,指的是每個月相對於第一個周的新增用戶中,仍然還有登錄的用戶數。留存率是針對新用戶的,其結果是一個矩陣式半面報告(只有一半有數據),每個數據記錄行是日期、列為對應的不同時間周期下的留存率。正常情況下,留存率會隨著時間周期的推移而逐漸降低。下面以月留存為例生成的月用戶留存曲線:
聚類分析屬於探索性的數據分析方法。通常,我們利用聚類分析將看似無序的對象進行分組、歸類,以達到更好地理解研究對象的目的。聚類結果要求組內對象相似性較高,組間對象相似性較低。在用戶研究中,很多問題可以藉助聚類分析來解決,比如,網站的信息分類問題、網頁的點擊行為關聯性問題以及用戶分類問題等等。其中,用戶分類是最常見的情況。
常見的聚類方法有不少,比如K均值(K-Means),譜聚類(Spectral Clustering),層次聚類(Hierarchical Clustering)。以最為常見的K-means為例,如下圖:
可以看到,數據可以被分到紅藍綠三個不同的簇(cluster)中,每個簇應有其特有的性質。顯然,聚類分析是一種無監督學習,是在缺乏標簽的前提下的一種分類模型。當我們對數據進行聚類後並得到簇後,一般會單獨對每個簇進行深入分析,從而得到更加細致的結果。
⑷ 分析問題時,有哪些高效的方法
分析問題的時候,可以先創造一個模板,然後在這些模板上把自己分析的問題全部寫上去,並且最好能夠分點分段,這樣才能夠更加的有效。
⑸ 數據分析方法
數據分析常用的方法有列表法和作圖法。
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支持過程。在實用中,數據分析可幫助人們作出判斷,以便採取適當行動。
數據分析的意義:
在產品的整個壽命周期,包括從市場調研到售後服務和最終處置的各個過程都需要適當運用數據分析過程,以提升有效性。例如,一個企業的領導人要通過市場調查,分析所得數據以判定市場動向,從而制定合適的生產及銷售計劃。因此數據分析有極廣泛的應用范圍。
數據分析一定程度上對網路營銷也有很大的好處,通過數據分析,知道目標客戶群上什麼網站、做什麼事、在什麼時間地點能夠找到他。實際上,論覆蓋面,網路營銷還遠遠趕不上傳統媒體。
2009年底中國的互聯網普及率為28.9%,而同期中國電視的普及率卻已經超過80%。但是,仍舊有很多有遠見的企業選擇網路營銷。其中的一個重要原因是,網路營銷的全過程都可以被追蹤到,通過數據分析可以隨時調整投放方式。
⑹ 做分析有哪些方法
方法/步驟
1/5
比較分析法
是統計分析中最常用的方法。是通過有關的指標對比來反映事物數量上差異和變化的方法。指標分析對比分析方法可分為靜態比較和動態比較分析。靜態比較是同一時間條件下不同總體指標比較,如不同部門、不同地區、不同國家的比較,也叫橫向比較;動態比較是同一總體條件不同時期指標數值的比較,也叫縱向比較。這兩種方法既可單獨使用,也可結合使用。
2/5
分組分析法
統計分析不僅要對總體數量特徵和數量關系進行分析,還要深入總體的內部進行分組分析。分組分析法就是根據統計分析的目的要求,把所研究的總體按照一個或者幾個標志劃分為若干個部分,加以整理,進行觀察、分析,以揭示其內在的聯系和規律性。
統計分組法的關鍵問題在於正確選擇分組標值和劃分各組界限。
3/5
回歸分析法
回歸分析法是依據事物發展變化的因果關系來預測事物未來的發展走勢,它是研究變數間相互關系的一種定量預測方法,回歸分析中,當研究的因果關系只涉及因變數和一個自變數時,叫做一元回歸分析;當研究的因果關系涉及因變數和兩個或兩個以上自變數時,叫做多元回歸分析。此外,回歸分析中,又依據描述自變數與因變數之間因果關系的函數表達式是線性的還是非線性的,分為線性回歸分析和非線性回歸分析。
4/5
因素分析法
因素分析法的最大功用,就是運用數學方法對可觀測的事物在發展中所表現出的外部特徵和聯系進行由表及裡、由此及彼、去粗取精、去偽存真的處理,從而得出客觀事物普遍本質的概括。其次,使用因素分析法可以使復雜的研究課題大為簡化,並保持其基本的信息量。
5/5
工具:
除了各種科學分析法,在過網路推廣時,我們還會用到各種工具:
一、 各種數據分析工具。其實大部分數據分析可以用EXCEL解決,再高階一點可以用SPSS、SAS等軟體。《誰說菜鳥不會數據分析》一書就詳細分析了各種工具和實用方法,公眾號<shop123電商>里有一些關於這本書的研究,有興趣可以關注下。
二、 關鍵詞提取。如何從一大推雜亂的信息中提取出關鍵信息?如何利用這些關鍵信息去推廣自己的產品/網站?光年有一款簡單好用的關鍵詞提取工具,可以通過分析文本內容提取出關鍵信息,從而應用到SEO做關鍵詞研究、優化文章標題或文案、PPC關鍵詞選擇等各種應用場景。
⑺ 常用的分析方法有哪些
問題一:常見的數據分析方法有哪些 1、聚類分析(Cluster Analysis)
聚類分析指將物理或抽象對象的 *** 分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。聚類分析所使用方法的不同,常常會得到不同的結論。不同研究者對於同一組數據進行聚類分析,所得到的聚類數未必一致。
2、因子分析(Factor Analysis)
因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。
因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。這些方法本質上大都屬近似方法,是以相關系數矩陣為基礎的,所不同的是相關系數矩陣對角線上的值,採用不同的共同性□2估值。在社會學研究中,因子分析常採用以主成分分析為基礎的反覆法。
3、相關分析(Correlation Analysis)
相關分析(correlation *** ysis),相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系,例如,以X和Y分別記一個人的身高和體重,或分別記每公頃施肥量與每公頃小麥產量,則X與Y顯然有關系,而又沒有確切到可由其中的一個去精確地決定另一個的程度,這就是相關關系。
4、對應分析(Correspondence Analysis)
對應分析(Correspondence *** ysis)也稱關聯分析、R-Q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
5、回歸分析
研究一個隨機變數Y對另一個(X)或一組(X1,X2,…,Xk)變數的相依關系的統計分析方法。回歸分析(regression *** ysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
6、方差分析(ANOVA/Analysis of Variance)
又稱「變異數分析」或「F檢驗」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。這個 還需要具體問題具體分析
問題二:在解決實際問題時常用的分析方法有哪些 在實際工作中,通常採用的技術分析方法有對比分析法,因素分析法和相關分析法等三種.
1、對比分析法
對比分析法是根據實際成本指標與不同時期的指標進行對比,來揭示差異,分析差異產生原因的一種方法.在對比分析中,可採取實際指標與計劃指標對比,本期實際與上期(或上年同期,歷史最好水平)實際指標對比,本期實際指標與國內外同類型企業的先進指標對比等形式.通過對比分析,可一般地了解企業成本的升降情況及其發展趨勢,查明原因,找出差距,提出進一步改進的措施.在採用對比分析時,應注意本期實際指標與對比指標的可比性,以使比較的結果更能說明問題,揭示的差異才能符合實際.若不可比,則可能使分析的結果不準確,甚至可能得出與實際情況完全不同的相反的結論.在採用對比分析法時,可採取絕對數對比,增減差額對比或相對數對比等多種形式.
比較分析法按比較內容(比什麼)分為:
(1)比較會計要素的總量
(2)比較結構百分比
(3)比較財務比率
2、因素分析法
因素分析法是將某一綜合性指標分解為各個相互關聯的因素,通過測定這些因素對綜合性指標差異額的影響程度的一種分析方法.在成本分析中採用因素分析法,就是將構成成本的各種因素進行分解,測定各個因素變動對成本計劃完成情況的影響程度,並據此對企業的成本計劃執行情況進行評價,並提出進一步的改進措施.
採用因素分析法的程序如下:
(1)將要分析的某項經濟指標分解為若干個因素的乘積.在分解時應注意經濟指標的組成因素應能夠反映形成該項指標差異的內在構成原因,否則,計算的結果就不準確.如材料費用指標可分解為產品產量,單位消耗量與單價的乘積.但它不能分解為生產該產品的天數,每天用料量與產品產量的乘積.因為這種構成方式不能全面反映產品材料費用的構成情況.
(2)計算經濟指標的實際數與基期數(如計劃數,上期數等),從而形成了兩個指標體系.這兩個指標的差額,即實際指標減基期指標的差額,就是所要分析的對象.各因素變動對所要分析的經濟指標完成情況影響合計數,應與該分析對象相等.
(3)確定各因素的替代順序.在確定經濟指標因素的組成時,其先後順序就是分析時的替代順序.在確定替代順序時,應從各個因素相互依存的關系出發,使分析的結果有助於分清經濟責任.替代的順序一般是先替代數量指標,後替代質量指標;先替代實物量指標,後替代貨幣量指標;先替代主要指標,後替代次要指標.
(4)計算替代指標.其方法是以基期數為基礎,用實際指標體系中的各個因素,逐步順序地替換.每次用實際數替換基數指標中的一個因素,就可以計算出一個指標.每次替換後,實際數保留下來,有幾個因素就替換幾次,就可以得出幾個指標.在替換時要注意替換順序,應採取連環的方式,不能間斷,否則,計算出來的各因素的影響程度之和,就不能與經濟指標實際數與基期數的差異額(即分析對象)相等.
(5)計算各因素變動對經濟指標的影響程度.其方法是將每次替代所得到的結果與這一因素替代前的結果進行比較,其差額就是這一因素變動對經濟指標的影響程度.
(6)將各因素變動對經濟指標影響程度的數額相加,應與該項經濟指標實際數與基期數的差額(即分析對象)相等.
上述因素分析法的計算過程可用以下公式表示:
設某項經濟指標N是由A,B,C三個因素組成的.在分析時,若是用實際指標與計劃指標進行對比,則計劃指標與實際指標的計算公式如下:
計劃指標N0=A0×B0×C0
實際指標N1=A1×B1×C1
分析對象為N1-N0的差額.
採用因素分析法測定各因素變動對指標N的影響程度時,......>>
問題三:常用的分析方法有哪些 目前系統安全分析法有20餘種,其中常用的分析法是:
(1)安全檢查表(safety check list)
(2)初步危險分析(PHA)
(3)故障類型、影響及致命度分析(FMECA)
(4)事件要分析(ETA)
(5)事故樹分析(FTA)
問題四:常用的分析方法及模型有哪些? 不細說了,直接網路搜索此書――《贏取競爭的100+N工具箱(mba原版1862頁).pdf》 目錄太長,涉及版權也不能再上圖了
下載不到的評論留下郵箱
問題五:常用的葯物分析方法有哪些 重量分析法
酸鹼滴定法
沉澱滴定法
氧化還原滴定法
非水滴定法
葯物儀器分析法
紫外分光光度法
質譜法
核磁共振波譜法
薄層色譜法
氣相色譜法
高效液相色譜法
電泳法和PH值測定法
物理常數測定法
問題六:數據分析方法有哪些 一、描述性統計
描述性統計是一類統計方法的匯總,揭示了數據分布特性。它主要包括數據的頻數分析、數據的集中趨勢分析、數據離散程度分析、數據的分布以及一些基本的統計圖形。
1、缺失值填充:常用方法有剔除法、均值法、決策樹法。
2、正態性檢驗:很多統計方法都要求數值服從或近似服從正態分布,所以在做數據分析之前需要進行正態性檢驗。常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法。
二、回歸分析
回歸分析是應用極其廣泛的數據分析方法之一。它基於觀測數據建立變數間適當的依賴關系,以分析數據內在規律。
1. 一元線性分析
只有一個自變數X與因變數Y有關,X與Y都必須是連續型變數,因變數Y或其殘差必須服從正態分布。
2. 多元線性回歸分析
使用條件:分析多個自變數X與因變數Y的關系,X與Y都必須是連續型變數,因變數Y或其殘差必須服從正態分布。
3.Logistic回歸分析
線性回歸模型要求因變數是連續的正態分布變數,且自變數和因變數呈線性關系,而Logistic回歸模型對因變數的分布沒有要求,一般用於因變數是離散時的情況。
4. 其他回歸方法:非線性回歸、有序回歸、Probit回歸、加權回歸等。
三、方差分析
使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態分布總體;各總體方差相等。
1. 單因素方差分析:一項試驗只有一個影響因素,或者存在多個影響因素時,只分析一個因素與響應變數的關系。
2. 多因素有交互方差分析:一頊實驗有多個影響因素,分析多個影響因素與響應變數的關系,同時考慮多個影響因素之間的關系
3. 多因素無交互方差分析:分析多個影響因素與響應變數的關系,但是影響因素之間沒有影響關系或忽略影響關系
4. 協方差分祈:傳統的方差分析存在明顯的弊端,無法控制分析中存在的某些隨機因素,降低了分析結果的准確度。協方差分析主要是在排除了協變數的影響後再對修正後的主效應進行方差分析,是將線性回歸與方差分析結合起來的一種分析方法。
四、假設檢驗
1. 參數檢驗
參數檢驗是在已知總體分布的條件下(一股要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗 。
2. 非參數檢驗
非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一般性假設(如總體分布的位D是否相同,總體分布是否正態)進行檢驗。
適用情況:順序類型的數據資料,這類數據的分布形態一般是未知的。
1)雖然是連續數據,但總體分布形態未知或者非正態;
2)總體分布雖然正態,數據也是連續類型,但樣本容量極小,如10以下;
主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。
問題七:常用的數據分析方法有哪些? 10分 一、掌握基礎、更新知識。
基本技術怎麼強調都不過分。這里的術更多是(計算機、統計知識), 多年做數據分析、數據挖掘的經歷來看、以及業界朋友的交流來看,這點大家深有感觸的。
資料庫查詢―SQL
數據分析師在計算機的層面的技能要求較低,主要是會SQL,因為這里解決一個數據提取的問題。有機會可以去逛逛一些專業的數據論壇,學習一些SQL技巧、新的函數,對你工作效率的提高是很有幫助的。
統計知識與數據挖掘
你要掌握基礎的、成熟的數據建模方法、數據挖掘方法。例如:多元統計:回歸分析、因子分析、離散等,數據挖掘中的:決策樹、聚類、關聯規則、神經網路等。但是還是應該關注一些博客、論壇中大家對於最新方法的介紹,或者是對老方法的新運用,不斷更新自己知識,才能跟上時代,也許你工作中根本不會用到,但是未來呢?
行業知識
如果數據不結合具體的行業、業務知識,數據就是一堆數字,不代表任何東西。是冷冰冰,是不會產生任何價值的,數據驅動營銷、提高科學決策一切都是空的。
一名數據分析師,一定要對所在行業知識、業務知識有深入的了解。例如:看到某個數據,你首先必須要知道,這個數據的統計口徑是什麼?是如何取出來的?這個數據在這個行業, 在相應的業務是在哪個環節是產生的?數值的代表業務發生了什麼(背景是什麼)?對於A部門來說,本月新會員有10萬,10萬好還是不好呢?先問問上面的這個問題:
對於A部門,
1、新會員的統計口徑是什麼。第一次在使用A部門的產品的會員?還是在站在公司角度上說,第一次在公司發展業務接觸的會員?
2、是如何統計出來的。A:時間;是通過創建時間,還是業務完成時間。B:業務場景。是只要與業務發接觸,例如下了單,還是要業務完成後,到成功支付。
3、這個數據是在哪個環節統計出來。在注冊環節,在下單環節,在成功支付環節。
4、這個數據代表著什麼。10萬高嗎?與歷史相同比較?是否做了營銷活動?這個行業處理行業生命同期哪個階段?
在前面二點,更多要求你能按業務邏輯,來進行數據的提取(更多是寫SQL代碼從資料庫取出數據)。後面二點,更重要是對業務了解,更行業知識了解,你才能進行相應的數據解讀,才能讓數據產生真正的價值,不是嗎?
對於新進入數據行業或者剛進入數據行業的朋友來說:
行業知識都重要,也許你看到很多的數據行業的同仁,在微博或者寫文章說,數據分析思想、行業知識、業務知識很重要。我非常同意。因為作為數據分析師,在發表任何觀點的時候,都不要忘記你居於的背景是什麼?
但大家一定不要忘記了一些基本的技術,不要把基礎去忘記了,如果一名數據分析師不會寫SQL,那麻煩就大了。哈哈。。你只有把數據先取對了,才能正確的分析,否則一切都是錯誤了,甚至會導致致命的結論。新同學,還是好好花時間把基礎技能學好。因為基礎技能你可以在短期內快速提高,但是在行業、業務知識的是一點一滴的積累起來的,有時候是急不來的,這更需要花時間慢慢去沉澱下來。
不要過於追求很高級、高深的統計方法,我提倡有空還是要多去學習基本的統計學知識,從而提高工作效率,達到事半功倍。以我經驗來說,我負責任告訴新進的同學,永遠不要忘記基本知識、基本技能的學習。
二、要有三心。
1、細心。
2、耐心。
3、靜心。
數據分析師其實是一個細活,特別是在前文提到的例子中的前面二點。而且在數據分析過程中,是一個不斷循環迭代的過程,所以一定在耐心,不怕麻煩,能靜下心來不斷去修改自己的分析思路。
三、形成自己結構化的思維。
數據分析師一定要嚴謹。而嚴謹一定要很強的結構化思維,如何提高結構化思維,也許只需要工作隊中不斷的實踐。但是我推薦你用mindman......>>
問題八:常用的多元分析方法? 包括3類:①多元方差分析、多元回歸分析和協方差分析,稱為線性模型方法,用以研究確定的自變數與因變數之間的關系;②判別函數分析和聚類分析,用以研究對事物的分類;③主成分分析、典型相關和因素分析,研究如何用較少的綜合因素代替為數較多的原始變數。
多元方差分析
是把總變異按照其來源(或實驗設計)分為多個部分,從而檢驗各個因素對因變數的影響以及各因素間交互作用的統計方法。例如,在分析2×2析因設計資料時,總變異可分為分屬兩個因素的兩個組間變異、兩因素間的交互作用及誤差(即組內變異)等四部分,然後對組間變異和交互作用的顯著性進行F檢驗。
多元方差分析的優點
是可以在一次研究中同時檢驗具有多個水平的多個因素各自對因變數的影響以及各因素間的交互作用。其應用的限制條件是,各個因素每一水平的樣本必須是獨立的隨機樣本,其重復觀測的數據服從正態分布,且各總體方差相等。
多元回歸分析
用以評估和分析一個因變數與多個自變數之間線性函數關系的統計方法。一個因變數y與自變數x1、x2、…xm有線性回歸關系是指: 其中α、β1…βm是待估參數,ε是表示誤差的隨機變數。通過實驗可獲得x1、x2…xm的若干組數據以及對應的y值,利用這些數據和最小二乘法就能對方程中的參數作出估計,記為╋、琛常它們稱為偏回歸系數。
多元回歸分析的優點
是可以定量地描述某一現象和某些因素間的線性函數關系。將各變數的已知值代入回歸方程便可求得因變數的估計值(預測值),從而可以有效地預測某種現象的發生和發展。它既可以用於連續變數,也可用於二分變數(0,1回歸)。多元回歸的應用有嚴格的限制。首先要用方差分析法檢驗自變數y與m個自變數之間的線性回歸關系有無顯著性,其次,如果y與m個自變數總的來說有線性關系,也並不意味著所有自變數都與因變數有線性關系,還需對每個自變數的偏回歸系數進行t檢驗,以剔除在方程中不起作用的自變數。也可以用逐步回歸的方法建立回歸方程,逐步選取自變數,從而保證引入方程的自變數都是重要的。
協方差分析
把線性回歸與方差分析結合起來檢驗多個修正均數間有無差別的統計方法。例如,一個實驗包含兩個多元自變數,一個是離散變數(具有多個水平),一個是連續變數,實驗目的是分析離散變數的各個水平的優劣,此變數是方差變數;而連續變數是由於無法加以控制而進入實驗的,稱為協變數。在運用協方差分析時,可先求出該連續變數與因變數的線性回歸函數,然後根據這個函數扣除該變數的影響,即求出該連續變數取等值情況時因變數的修正均數,最後用方差分析檢驗各修正均數間的差異顯著性,即檢驗離散變數對因變數的影響。
協方差分析兼具方差分析和回歸分析的優點
可以在考慮連續變數影響的條件下檢驗離散變數對因變數的影響,有助於排除非實驗因素的干擾作用。其限制條件是,理論上要求各組資料(樣本)都來自方差相同的正態總體,各組的總體直線回歸系數相等且都不為0。因此應用協方差分析前應先進行方差齊性檢驗和回歸系數的假設檢驗,若符合或經變換後符合上述條件,方可作協方差分析。
判別函數分析
判定個體所屬類別的統計方法。其基本原理是:根據兩個或多個已知類別的樣本觀測資料確定一個或幾個線性判別函數和判別指標,然後用該判別函數依據判別指標來判定另一個個體屬於哪一類。 判別分析不僅用於連續變數,而且藉助於數量化理論亦可用於定性資料。它有助於客觀地確定歸類標准。然而,判別分析僅可用於類別已確定的情況。當類別本身未定時,預用聚類分析先分出類別,然後再進行判別分析。
聚類分析
解決分類問題的一種統計方法。若給定n個觀測對象,每個觀......>>
問題九:常用的數學分析方法有哪些 你問的是什麼層次?
1、數學分析方法的基本內容是數學化、模型化和計算機化。從數學角度看,數學中發現了許多有實用價值的手段,如線性規劃、整數規劃、動態規劃、對策論、排隊論、存貨模型、調度模型、概率統計等等,對定量化的分析與決斷起到了重大的推動作用;從模型化角度看,每一種數學手段都包括了解決決策問題的具體數學模型,人們可以藉助於模型找出自己所需了解的問題的答案;從計算機化的角度看,人們可以借用電子計算機這個快速邏輯計算工具,縮短解決問題的時間,增強預測的精確性。這「三化」是互相聯系的,它們的結合使決策的技術和方法發生了重大變化。
2、另一個層次:待定系數法,換元法,數學歸納法。
問題十:常見的調查方法有哪些 (一)、按調查對象的范圍分,可分為全面調查和非全面調查.
(二)、按調查的連續性來分,可分為一次性調查和經常性調查.
(三)、按調查的組織方式不同,可分為統計報表和專門調查.
(四)、按調查的方法不同,可分為直接觀察法、報告法和詢問法.
⑻ 股票投資中比較有效的技術分析方法是什麼
你好,股票投資的分析方法主要有如下三種:基本分析、技術分析、演化分析,其中基本分析主要應用於投資標的物的選擇上,技術分析和演化分析則主要應用於具體投資操作的時間和空間判斷上,作為提高投資分析有效性和可靠性的重要手段。
(1)基本分析:基本分析法是以傳統經濟學理論為基礎,以企業價值作為主要研究對象,通過對決定企業內在價值和影響股票價格的 宏觀經濟 形勢、行業發展前景、企業經營狀況等進行詳盡分析,以大概測算上市公司的長期投資價值和安全邊際,並與當前的股票價格進行比較,形成相應的投資建議。基本分析認為股價波動不可能被准確預測,而只能在有足夠安全邊際的情況下買入股票並長期持有。
(2)技術分析:技術分析法是以傳統證券學理論為基礎,以股票價格作為主要研究對象,以預測股價波動趨勢為主要目的,從股價變化的歷史圖表入手,對股票市場波動規律進行分析的方法總和。技術分析認為市場行為包容消化一切,股價波動可以定量分析和預測,如道氏理論、波浪理論、江恩理論等。
(3)演化分析:演化分析法是以演化證券學理論為基礎,將股市波動的生命運動特性作為主要研究對象,從股市的代謝性、趨利性、適應性、可塑性、應激性、變異性和節律性等方面入手,對市場波動方向與空間進行動態跟蹤研究,為股票交易決策提供機會和風險評估的方法總和。演化分析認為股價波動無法准確預測,因此它屬於模糊分析范疇,並不試圖為股價波動軌跡提供定量描述和預測,而是著重為投資人建立一種科學觀察和理解股市波動邏輯的全新的分析框架。
⑼ 在解決實際問題時常用的分析方法有哪些
目前在實際工作中,通常採用的分析方法有五種:
1、對比分析法
也叫比較分析法,是通過實際數與基數的對比來提示實際數與基數之間的差異,藉以了解經濟活動的成績和問題的一種分析方法。在科學探究活動中,常常用到對比分析法,這種分析法與等效替代法相似。對比法, 戲劇常用的一種主要藝術手法。一般有三種對比:人物對比、場面對比、細節對比。
2、因素分析法
又稱經驗分析法,是一種定性分析方法。該方法主要指根據價值工程對象選擇應考慮的各種因素,憑借分析人員的知識和經驗集體研究確定選擇對象。該方法簡單易行,要求價值工程人員對產品熟悉,經驗豐富,在研究對象彼此相差較大或時間緊迫的情況下比較適用,缺點是無定量分析、主觀影響大。
因素分析法是利用統計指數體系分析現象總變動中各個因素影響程度的一種統計分析方法,包括連環替代法、差額分析法、指標分解法等。 因素分析法是現代統計學中一種重要而實用的方法,它是多元統計分析的一個分支。使用這種方法能夠使研究者把一組反映事物性質、狀態、特點等的變數簡化為少數幾個能夠反映出事物內在聯系的、固有的、決定事物本質特徵的因素。
因素分析法的最大功用,就是運用數學方法對可觀測的事物在發展中所表現出的外部特徵和聯系進行由表及裡、由此及彼、去粗取精、去偽存真的處理,從而得出客觀事物普遍本質的概括。其次,使用因素分析法可以使復雜的研究課題大為簡化,並保持其基本的信息量。
3、相關分析法
揭示某一礦區鑽孔自然彎曲趨勢的另一方法是進行相關分析,又稱回歸分析,即利用數理統計原理,求出反映鑽孔自然彎曲趨勢的回歸方程。通常設孔深為自變數,頂角和方位角為因變數,建立相關關系式這兩個相關關系式就代表鑽孔頂角和鑽孔方位角隨孔深而變化的規律。
4、差額計演算法
確定引起某個經濟指標變動的各個因素的影響程度的一種計算方法。與"連續替代法"內容相同。在幾個相互聯系的因素共同影響著某一個經濟指標的情況下,可應用這一方法計算各個因素對該經濟指標發生變動的影響程度。在衡量某一因素對於一個經濟指標的影響時,假定只有這一因素變動,而其餘因素不變。確定各個因素替代順序,然後按照這一順序進行替代計算。這種方法是假定各個因素依照一定的順序發生變動而進行替代計算的, 因此分析出來的結果具有一定程度的假定性。
5、比例法
比例法亦稱「間接計演算法」。它是利用過去兩個相關經濟指標之間長期形成的穩定比率來推算確定計劃期有關指標的一種方法。
(9)超實用的分析方法擴展閱讀
分析法是「綜合法」的對稱。把復雜的經濟現象分解成許多簡單組成部分,分別進行研究的方法。其實質是: 通過調查研究,找出事物的內在矛盾,並對矛盾的各個方面進行深入研究。剔除那些偶然的、非本質的東西,抽象出必然的、本質的因素,並由此得出一些反映本質的簡單規定,以把握矛盾的各個方面的特殊性。
分析法所提供的只是對於經濟現象的片面理解,它還不能從總體上、從各個部分之間的相互聯繫上來把握經濟現象。因此,在分析的基礎上,還必須運用綜合的方法,使分析得到的各個方面的本質規定,按照經濟現象內在的邏輯聯系,形成有機的體系,這樣才能全面、深刻地認識經濟現象,提出解決問題的有效辦法。
適用范圍:不易直接證明結論;從結論很顯然能推出明顯正確的條件。
⑽ 常用的分析方法及模型有哪些
1、RFM模型
RFM分析是客戶關系分析中一種簡單實用客戶分析方法,將最近一次消費、消費頻率、消費金額這三個要素構成了數據分析最好的指標,衡量客戶價值和客戶創利能力。
RFM分析也就是通過這個三個指標對客戶進行觀察和分類,針對不同的特徵的客戶進行相應的營銷策略。
R——最後交易距離當前天數(Recency)
F——累計交易次數(Frequency)
M——累計交易金額(Monetary)
在這三個制約條件下,我們把M值大,也就是貢獻金額最大的客戶作為「 重要客戶 」,其餘則為「 一般客戶 "和」 流失客戶 「,基於此,我們產生了8種不同的客戶類型:
重要價值客戶 :復購率高、購買頻次高、花費金額大的客戶,是價值最大的用戶。
重要保持客戶 :買的多、買的貴但是不常買的客戶,我們要重點保持;
重要發展客戶 :經常買、花費大但是購買頻次不多的客戶,我們要發展其多購買;
重要挽留客戶 :願意花錢但是不常買、購買頻次不多的客戶,我們要重點挽留;
一般價值客戶 :復購率高、購買頻次高,但是花費金額小的客戶,屬於一般價值;
一般保持客戶 :買的多但是不常買、花錢不多,屬於一般保持客戶;
一般發展客戶 :經常買,但是買不多、花錢也不多,屬於一般發展客戶;
一般挽留客戶 :不願花錢、不常買、購買頻次不高,最沒有價值的客戶;
下面是我用 FineBI 做的RFM模型可視化儀錶板,可以通過RFM模型對客戶的終生價值做一個合理的預估,基於一個理想的客戶特徵來衡量現實中客戶價值的高低,通過此類分析,定位最有可能成為品牌忠誠客戶的群體,讓我們把主要精力放在最有價值的用戶身上。
波士頓模型最初是一個時間管理模型,按照緊急、不緊急、重要、不重要排列組合分成四個象限,以此便於對時間進行有效的管理。
運用在客戶分析中,也就是利用銷售額和利潤這兩個重要指標分為四個象限,對我們的客戶進行分組。我們將這兩個維度作為橫縱坐標軸分為四個象限,將產品或者服務分為下面四種類型:
明星類 :增長率高、佔有率高,代表著十分成功的產品,是主打的明星產品;
金牛類 :增長率低、佔有率高,已經占據了市場但是沒有發展空間的產品,屬於現金牛產品;
問題類 :增長率高、佔有率低,說明用戶需求高,但是本身產品有問題,需要改進優化;
瘦狗類 :增長率低、佔有率低,市場不認可的失敗產品,需要盡快去除;
我們如此分類的目的正是要根據波士頓矩陣,將一些沒有發展前景和市場潛力的產品盡快淘汰掉,保證明星產品和現金牛產品的份額,從而搭配好產品或者業務的整個市場布局。
FineBI製作的波士頓模型實際使用:
如圖所示,每個銷售大區與每個銷售年份下的客戶分布,通過篩選數據,我們得到我們想要的客戶信息。而波士頓矩陣則是一個非常有力的工具,可以幫助我們將雜亂無序的東西組塊整理,在使用矩陣的的時候,盡量選取縱向和橫向毫無關聯要素來分析,這樣才能發揮矩陣分塊整理的作用。
我們知道並不是所有的顧客都具備相同的價值,如果企業能夠專注於那些可以帶來最大未來利益的客戶,就可以實現更好的運營。所以企業必須識別出這些客戶,CLV是對客戶未來利潤的有效預測,它還有另外一個名字,叫做LTV (life time value)。
這里需要特別說明的是,CLV考慮了完整的客戶生命周期,包含客戶獲取和客戶流失,也就是它計算的不只是眼前顧客已經產生的價值,還預測了未來價值。
CLV的計算公式有非常多,有的會非常復雜,主要在流失率這個環節和影響因素就相當多,也有會加上投入成本,價值變化率和利率變化等等。
比較實用簡單的是這種:
那對於CLV的應用,可以從以下兩個模型來看,將企業的最優客戶與不值得投入的客戶區分出來:
帕累托原則,又稱二八原則,是關於效率與分配的判斷方法。帕累托法則是指在任何大系統中,約80%的結果是由該系統中約20%的變數產生的。應用在企業中,就是80%的利潤來自於20%的項目或重要客戶。
模型的解釋:當一個企業80%利潤來自於20%的客戶總數時,這個企業客戶群體是健康且趨於穩固的。 當一個企業80%利潤來自大於20%的客戶總數時,企業需要增加大客戶的數量。當一個企業80%利潤來自小於20%的客戶群時,企業的基礎客戶群需要拓展與增加。
模型的實際使用,某商場品牌商的銷售額。
一共10家客戶,5家客戶(50%)提供了80%的銷售額,這就說明需要增加大品牌客戶數量。
帶來大量銷售額的客戶必須認真對待和維護,如果客戶數量大,尤其需要列出重點客戶重點跟進,把有限的精力放在創造利潤大的客戶上。
5、漏斗模型
漏斗模型本質是分解和量化,為了方便大家理解,這里以營銷漏斗模型舉例:
也就是說營銷的環節指的是從獲取用戶到最終轉化成購買這整個流程中的一個個子環節,相鄰環節的轉化率則就是指用數據指標來量化每一個步驟的表現。
所以整個漏斗模型就是先將一個完整的購買流程拆分成一個個步驟,然後用轉化率來衡量每一個步驟的表現,最後通過異常的數據指標找出有問題的環節,然後解決該環節的問題,最終達到提升整體購買轉化率的目的,所以漏斗模型的核心思想可以歸為分解和量化。
比如分析電商的轉化,我們要做的就是監控每個層級上的用戶轉化,尋找每個層級的可優化點。對於沒有按照流程操作的用戶,專門繪制他們的轉化模型,縮短路徑提升用戶體驗。
PEST,也就是政治(Politics)、經濟(Economy)、社會(Society)、技術(Technology),能從各個方面把握宏觀環境的現狀及變化趨勢,主要用戶行業分析。
宏觀環境又稱一般環境,是指影響一切行業和企業的各種宏觀力量。
對宏觀環境因素作分析時,由於不同行業和企業有其自身特點和經營需要,分析的具體內容會有差異,但一般都應對政治、經濟、技術、社會,這四大類影響企業的主要外部環境因素進行分析。
政治環境:政治體制、經濟體制、財政政策、稅收政策、產業政策、投資政策等。
社會環境:人口規模、性別比例、年齡結構、生活力式、購買習慣、城市特點等。
技術環境:折舊和報廢速度、技術更新速度、技術傳播速度、技術商品化速度等。
經濟環境:GDP 及增長率、進出口總額及增長率、利率、匯率、通貨膨脹率、消費價格指數、居民可支配收入、失業率、勞動生產率等。
5W2H,即為什麼(Why)、什麼事(What)、誰(Who)、什麼時候(When)、什麼地方(Where)、如何做(How)、什麼價格(How much),主要用於用戶行為分析、業務問題專題分析、營銷活動等。
該分析方法又稱為七何分析法,是一個非常簡單、方便又實用的工具,以用戶購買行為為例:
Why:用戶為什麼要買?產品的吸引點在哪裡?
What:產品提供的功能是什麼?
Who:用戶群體是什麼?這個群體的特點是什麼?
When:購買頻次是多少?
Where:產品在哪裡最受歡迎?在哪裡賣出去?
How:用戶怎麼購買?購買方式什麼?
How much:用戶購買的成本是多少?時間成本是多少?
SWOT分析法也叫態勢分析法,S (strengths)是優勢、W (weaknesses)是劣勢,O (opportunities)是機會、T (threats)是威脅或風險。
SWOT分析法是用來確定企業自身的內部優勢、劣勢和外部的機會和威脅等,通過調查列舉出來,並依照矩陣形式排列,然後用系統分析的思想,把各種因素相互匹配起來加以分析。
運用這種方法,可以對研究對象所處的情景進行全面、系統、准確的研究,從而將公司的戰略與公司內部資源、外部環境有機地結合起來。
4P即產品(Proct)、價格(Price)、渠道(Place)、推廣(Promotion),在營銷領域,這種以市場為導向的營銷組合理論,被企業應用最普遍。
可以說企業的一切營銷動作都是在圍繞著4P理論進行,也就是將:產品、價格、渠道、推廣。通過將四者的結合、協調發展,從而提高企業的市場份額,達到最終獲利的目的。
產品:從市場營銷的角度來看,產品是指能夠提供給市場,被入們使用和消費並滿足人們某種需要的任何東西,包括有形產品、服務、人員、組織、觀念或它們的組合。
價格:是指顧客購買產品時的價格,包括基本價格、折扣價格、支付期限等。影響定價的主要因素有三個:需求、成本與競爭。
渠道:是指產品從生產企業流轉到用戶手上全過程中所經歷的各個環節。
促銷:是指企業通過銷售行為的改變來刺激用戶消費,以短期的行為(比如讓利、買一送一,營銷現場氣氛等等)促成消費的增長,吸引其他品牌的用戶或導致提前消費來促進銷售的增長。廣告、宣傳推廣、人員推銷、銷售促進是一個機構促銷組合的四大要素。
邏輯樹又稱問題樹、演繹樹或分解樹等。它是把一個已知問題當成「主幹」,然後開始考慮這個問題和哪些相關問題有關,也就是「分支」。邏輯樹能保證解決問題的過程的完整性,它能將工作細分為便於操作的任務,確定各部分的優先順序,明確地把責任落實到個人。
邏輯樹的使用必須遵循以下三個原則:
要素化:把相同的問題總結歸納成要素。
框架化:將各個要素組織成框架。遵守不重不漏的原則。
關聯化:框架內的各要素保持必要的相互關系,簡單而不獨立。
AARRR模型是所有運營人員都要了解的一個數據模型,從整個用戶生命周期入手,包括獲取(Acquisition)、激活(Activition)、留存(Retention)、變現(Revenue)和傳播(Refer)。
每個環節分別對應生命周期的5個重要過程,即從獲取用戶,到提升活躍度,提升留存率,並獲取收入,直至最後形成病毒式傳播。