❶ 研究幾何問題的一般方法
1、幾何證明是平面幾何中的一個重要問題,它對培養學生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題常常可以相互轉化,如證明平行關系可轉化為證明角等或角互補的問題。
2、掌握分析、證明幾何問題的常用方法:
(1)綜合法(由因導果),從已知條件出發,通過有關定義、定理、公理的應用,逐步向前推進,直到問題的解決;
(2)分析法(執果索因)從命題的結論考慮,推敲使其成立需要具備的條件,然後再把所需的條件看成要證的結論繼續推敲,如此逐步往上逆求,直到已知事實為止;
(3)兩頭湊法:將分析與綜合法合並使用,比較起來,分析法利於思考,綜合法易於表達,因此,在實際思考問題時,可合並使用,靈活處理,以利於縮短題設與結論的距離,最後達到證明目的。
3、掌握構造基本圖形的方法:復雜的圖形都是由基本圖形組成的,因此要善於將復雜圖形分解成基本圖形。在更多時候需要構造基本圖形,在構造基本圖形時往往需要添加輔助線,以達到集中條件、轉化問題的目的。
以上只是一些常規方法,要很好的提升幾何證明,做一定的題目是非常有必要的,當然不能盲目刷題浪費時間;一般刷一些特別典型的題目,例如常見的幾何模型:平行、一線三角模型、半形模型、中點模型等;掌握這些對類似題型可以達到快速解決的作用,達到舉一反三的目的,提高學習效率.
❷ 圖書館學研究的專門方法有哪些
圖書館學研究基本上可分為理論研究、歷史研究、實踐研究三大塊。常用的方法有社會調查、統計、文獻計量、資料分析等,依具體研究而定。
❸ 建模的五種基本方法
量綱分析法
量綱分析是20世紀初提出的在物理領域中建立數學模型的一種方法,它是在經驗和實驗的基礎上,利用物理定律的量綱齊次性,確定各物理量之間的關系。它是一種數學分析方法,通過量綱分析,可以正確地分析各變數之間的關系,簡化實驗和便於成果整理。
在國際單位制中,有七個基本量:質量、長度、時間、電流、溫度、光強度和物質的量,它們的量綱分別為M、L、T、I、H、J和N,稱為基本量綱。
量綱分析法常常用於定性地研究某些關系和性質,利用量綱齊次原則尋求物理量之間的關系,在數學建模過程中常常進行無量綱化,無量綱化是根據量綱分析思想,恰當地選擇特徵尺度將有量綱量化為無量綱量,從而達到減少參數、簡化模型的效果。
差分法
差分法的數學思想是通過taylor級數展開等方法把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的方程組,將微分問題轉化為代數問題,是建立離散動態系統數學模型的有效方法。
構造差分的方法有多種形式,目前主要採用的是泰勒級數展開方法。其基本的差分表達式主要有以下幾種形式:一階向前差分、一階向後差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。
差分法的解題步驟為:建立微分方程;構造差分格式;求解差分方程;精度分析和檢驗。
變分法
變分法是處理函數的函數的數學領域,即泛函問題,和處理數的函數的普通微積分相對。這樣的泛函可以通過未知函數的積分和它的導數來構造,最終尋求的是極值函數。現實中很多現象可以表達為泛函極小問題,即變分問題。變分問題的求解方法通常有兩種:古典變分法和最優控制論。受基礎知識的制約,數學建模競賽大專組的建模方法使用變分法較少。
圖論法
數學建模中的圖論方法是一種獨特的方法,圖論建模是指對一些抽象事物進行抽象、化簡,並用圖來描述事物特徵及內在聯系的過程。圖論是研究由線連成的點集的理論。一個圖中的結點表示對象,兩點之間的連線表示兩對象之間具有某種特定關系(先後關系、勝負關系、傳遞關系和連接關系等)。事實上,任何一個包含了某種二元關系的系統都可以用圖形來模擬。因此,圖論是研究自然科學、工程技術、經濟問題、管理及其他社會問題的一個重要現代數學工具,更是成為了數學建模的一個必備工具。