1. 大數據分析方法解讀以及相關工具介紹
大數據分析方法解讀以及相關工具介紹
要知道,大數據已不再是數據大,最重要的現實就是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。
越來越多的應用涉及到大數據,這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以,大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於此,大數據分析方法理論有哪些呢?
大數據分析的五個基本方面
(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
AnalyticVisualizations(可視化分析)
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
SemanticEngines(語義引擎)
我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。
DataMiningAlgorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。
大數據處理
大數據處理數據時代理念的三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。具體的大數據處理方法其實有很多,但是根據長時間的實踐,筆者總結了一個基本的大數據處理流程,並且這個流程應該能夠對大家理順大數據的處理有所幫助。整個處理流程可以概括為四步,分別是採集、導入和預處理、統計和分析,以及挖掘。
採集
大數據的採集是指利用多個資料庫來接收發自客戶端的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的K-Means、用於統計學習的SVM和用於分類的Naive Bayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,還有,常用數據挖掘演算法都以單線程為主。
大數據分析工具詳解 IBM惠普微軟工具在列
去年,IBM宣布以17億美元收購數據分析公司Netezza;EMC繼收購數據倉庫軟體廠商Greenplum後再次收購集群NAS廠商Isilon;Teradata收購了Aster Data 公司;隨後,惠普收購實時分析平台Vertica等,這些收購事件指向的是同一個目標市場——大數據。是的,大數據時代已經來臨,大家都在摩拳擦掌,搶占市場先機。
而在這裡面,最耀眼的明星是hadoop,Hadoop已被公認為是新一代的大數據處理平台,EMC、IBM、Informatica、Microsoft以及Oracle都紛紛投入了Hadoop的懷抱。對於大數據來說,最重要的還是對於數據的分析,從裡面尋找有價值的數據幫助企業作出更好的商業決策。下面,我們就來看以下八大關於大數據分析的工具。
EMC Greenplum統一分析平台(UAP)
Greenplum在2010年被EMC收購了其EMC Greenplum統一分析平台(UAP)是一款單一軟體平台,數據團隊和分析團隊可以在該平台上無縫地共享信息、協作分析,沒必要在不同的孤島上工作,或者在不同的孤島之間轉移數據。正因為如此,UAP包括ECM Greenplum關系資料庫、EMC Greenplum HD Hadoop發行版和EMC Greenplum Chorus。
EMC為大數據開發的硬體是模塊化的EMC數據計算設備(DCA),它能夠在一個設備裡面運行並擴展Greenplum關系資料庫和Greenplum HD節點。DCA提供了一個共享的指揮中心(Command Center)界面,讓管理員可以監控、管理和配置Greenplum資料庫和Hadoop系統性能及容量。隨著Hadoop平台日趨成熟,預計分析功能會急劇增加。
IBM打組合拳提供BigInsights和BigCloud
幾年前,IBM開始在其實驗室嘗試使用Hadoop,但是它在去年將相關產品和服務納入到商業版IBM在去年5月推出了InfoSphere BigI雲版本的 InfoSphere BigInsights使組織內的任何用戶都可以做大數據分析。雲上的BigInsights軟體可以分析資料庫里的結構化數據和非結構化數據,使決策者能夠迅速將洞察轉化為行動。
IBM隨後又在10月通過其智慧雲企業(SmartCloud Enterprise)基礎架構,將BigInsights和BigSheets作為一項服務來提供。這項服務分基礎版和企業版;一大賣點就是客戶不必購買支持性硬體,也不需要IT專門知識,就可以學習和試用大數據處理和分析功能。據IBM聲稱,客戶用不了30分鍾就能搭建起Hadoop集群,並將數據轉移到集群裡面,數據處理費用是每個集群每小時60美分起價。
Informatica 9.1:將大數據的挑戰轉化為大機遇
Informatica公司在去年10月則更深入一步,當時它推出了HParser,這是一種針對Hadoop而優化的數據轉換環境。據Informatica聲稱,軟體支持靈活高效地處理Hadoop裡面的任何文件格式,為Hadoop開發人員提供了即開即用的解析功能,以便處理復雜而多樣的數據源,包括日誌、文檔、二進制數據或層次式數據,以及眾多行業標准格式(如銀行業的NACHA、支付業的SWIFT、金融數據業的FIX和保險業的ACORD)。正如資料庫內處理技術加快了各種分析方法,Informatica同樣將解析代碼添加到Hadoop裡面,以便充分利用所有這些處理功能,不久會添加其他的數據處理代碼。
Informatica HParser是Informatica B2B Data Exchange家族產品及Informatica平台的最新補充,旨在滿足從海量無結構數據中提取商業價值的日益增長的需求。去年, Informatica成功地推出了創新的Informatica 9.1 for Big Data,是全球第一個專門為大數據而構建的統一數據集成平台。
甲骨文大數據機——Oracle Big Data Appliance
甲骨文的Big Data Appliance集成系統包括Cloudera的Hadoop系統管理軟體和支持服務Apache Hadoop 和Cloudera Manager。甲骨文視Big Data Appliance為包括Exadata、Exalogic和 Exalytics In-Memory Machine的「建造系統」。Oracle大數據機(Oracle Big Data Appliance),是一個軟、硬體集成系統,在系統中融入了Cloudera的Distribution Including Apache Hadoop、Cloudera Manager和一個開源R。該大數據機採用Oracle Linux操作系統,並配備Oracle NoSQL資料庫社區版本和Oracle HotSpot Java虛擬機。Big Data Appliance為全架構產品,每個架構864GB存儲,216個CPU內核,648TBRAW存儲,每秒40GB的InifiniBand連接。Big Data Appliance售價45萬美元,每年硬軟體支持費用為12%。
甲骨文Big Data Appliance與EMC Data Computing Appliance匹敵,IBM也曾推出數據分析軟體平台InfoSphere BigInsights,微軟也宣布在2012年發布Hadoop架構的SQL Server 2012大型數據處理平台。
統計分析方法以及統計軟體詳細介紹
統計分析方法有哪幾種?下面我們將詳細闡述,並介紹一些常用的統計分析軟體。
一、指標對比分析法指標對比分析法
統計分析的八種方法一、指標對比分析法指標對比分析法,又稱比較分析法,是統計分析中最常用的方法。是通過有關的指標對比來反映事物數量上差異和變化的方法。有比較才能鑒別。單獨看一些指標,只能說明總體的某些數量特徵,得不出什麼結論性的認識;一經過比較,如與國外、外單位比,與歷史數據比,與計劃相比,就可以對規模大小、水平高低、速度快慢作出判斷和評價。
指標分析對比分析方法可分為靜態比較和動態比較分析。靜態比較是同一時間條件下不同總體指標比較,如不同部門、不同地區、不同國家的比較,也叫橫向比較;動態比較是同一總體條件不同時期指標數值的比較,也叫縱向比較。這兩種方法既可單獨使用,也可結合使用。進行對比分析時,可以單獨使用總量指標或相對指標或平均指標,也可將它們結合起來進行對比。比較的結果可用相對數,如百分數、倍數、系數等,也可用相差的絕對數和相關的百分點(每1%為一個百分點)來表示,即將對比的指標相減。
二、分組分析法指標對比分析法
分組分析法指標對比分析法對比,但組成統計總體的各單位具有多種特徵,這就使得在同一總體范圍內的各單位之間產生了許多差別,統計分析不僅要對總體數量特徵和數量關系進行分析,還要深入總體的內部進行分組分析。分組分析法就是根據統計分析的目的要求,把所研究的總體按照一個或者幾個標志劃分為若干個部分,加以整理,進行觀察、分析,以揭示其內在的聯系和規律性。
統計分組法的關鍵問題在於正確選擇分組標值和劃分各組界限。
三、時間數列及動態分析法
時間數列。是將同一指標在時間上變化和發展的一系列數值,按時間先後順序排列,就形成時間數列,又稱動態數列。它能反映社會經濟現象的發展變動情況,通過時間數列的編制和分析,可以找出動態變化規律,為預測未來的發展趨勢提供依據。時間數列可分為絕對數時間數列、相對數時間數列、平均數時間數列。
時間數列速度指標。根據絕對數時間數列可以計算的速度指標:有發展速度、增長速度、平均發展速度、平均增長速度。
動態分析法。在統計分析中,如果只有孤立的一個時期指標值,是很難作出判斷的。如果編制了時間數列,就可以進行動態分析,反映其發展水平和速度的變化規律。
進行動態分析,要注意數列中各個指標具有的可比性。總體范圍、指標計算方法、計算價格和計量單位,都應該前後一致。時間間隔一般也要一致,但也可以根據研究目的,採取不同的間隔期,如按歷史時期分。為了消除時間間隔期不同而產生的指標數值不可比,可採用年平均數和年平均發展速度來編制動態數列。此外在統計上,許多綜合指標是採用價值形態來反映實物總量,如國內生產總值、工業總產值、社會商品零售總額等計算不同年份的發展速度時,必須消除價格變動因素的影響,才能正確的反映實物量的變化。也就是說必須用可比價格(如用不變價或用價格指數調整)計算不同年份相同產品的價值,然後才能進行對比。
為了觀察我國經濟發展的波動軌跡,可將各年國內生產總值的發展速度編制時間數列,並據以繪製成曲線圖,令人得到直觀認識。
四、指數分析法
指數是指反映社會經濟現象變動情況的相對數。有廣義和狹義之分。根據指數所研究的范圍不同可以有個體指數、類指數與總指數之分。
指數的作用:一是可以綜合反映復雜的社會經濟現象的總體數量變動的方向和程度;二是可以分析某種社會經濟現象的總變動受各因素變動影響的程度,這是一種因素分析法。操作方法是:通過指數體系中的數量關系,假定其他因素不變,來觀察某一因素的變動對總變動的影響。
用指數進行因素分析。因素分析就是將研究對象分解為各個因素,把研究對象的總體看成是各因素變動共同的結果,通過對各個因素的分析,對研究對象總變動中各項因素的影響程度進行測定。因素分析按其所研究的對象的統計指標不同可分為對總量指標的變動的因素分析,對平均指標變動的因素分析。
五、平衡分析法
平衡分析是研究社會經濟現象數量變化對等關系的一種方法。它把對立統一的雙方按其構成要素一一排列起來,給人以整體的概念,以便於全局來觀察它們之間的平衡關系。平衡關系廣泛存在於經濟生活中,大至全國宏觀經濟運行,小至個人經濟收支。平衡種類繁多,如財政平衡表、勞動力平衡表、能源平衡表、國際收支平衡表、投入產出平衡表,等等。平衡分析的作用:一是從數量對等關繫上反映社會經濟現象的平衡狀況,分析各種比例關系相適應狀況;二是揭示不平衡的因素和發展潛力;三是利用平衡關系可以從各項已知指標中推算未知的個別指標。
六、綜合評價分析
社會經濟分析現象往往是錯綜復雜的,社會經濟運行狀況是多種因素綜合作用的結果,而且各個因素的變動方向和變動程度是不同的。如對宏觀經濟運行的評價,涉及生活、分配、流通、消費各個方面;對企業經濟效益的評價,涉及人、財、物合理利用和市場銷售狀況。如果只用單一指標,就難以作出恰當的評價。
進行綜合評價包括四個步驟:
1.確定評價指標體系,這是綜合評價的基礎和依據。要注意指標體系的全面性和系統性。
2.搜集數據,並對不同計量單位的指標數值進行同度量處理。可採用相對化處理、函數化處理、標准化處理等方法。
3.確定各指標的權數,以保證評價的科學性。根據各個指標所處的地位和對總體影響程度不同,需要對不同指標賦予不同的權數。
4.對指標進行匯總,計算綜合分值,並據此作出綜合評價。
七、景氣分析
經濟波動是客觀存在的,是任何國家都難以完全避免的。如何避免大的經濟波動,保持經濟的穩定發展,一直是各國政府和經濟之專家在宏觀調控和決策中面臨的重要課題,景氣分析正是適應這一要求而產生和發展的。景氣分析是一種綜合評價分析,可分為宏觀經濟景氣分析和企業景氣調查分析。
宏觀經濟景氣分析。是國家統計局20世紀80年代後期開始著手建立監測指標體系和評價方法,經過十多年時間和不斷完善,已形成制度,定期提供景氣分析報告,對宏觀經濟運行狀態起到晴雨表和報警器的作用,便於國務院和有關部門及時採取宏觀調控措施。以經常性的小調整,防止經濟的大起大落。
企業景氣調查分析。是全國的大中型各類企業中,採取抽樣調查的方法,通過問卷的形式,讓企業負責人回答有關情況判斷和預期。內容分為兩類:一是對宏觀經濟總體的判斷和預期;一是對企業經營狀況的判斷和預期,如產品訂單、原材料購進、價格、存貨、就業、市場需求、固定資產投資等。
八、預測分析
宏觀經濟決策和微觀經濟決策,不僅需要了解經濟運行中已經發生了的實際情況,而且更需要預見未來將發生的情況。根據已知的過去和現在推測未來,就是預測分析。
統計預測屬於定量預測,是以數據分析為主,在預測中結合定性分析。統計預測的方法大致可分為兩類:一類是主要根據指標時間數列自身變化與時間的依存關系進行預測,屬於時間數列分析;另一類是根據指標之間相互影響的因果關系進行預測,屬於回歸分析。
預測分析的方法有回歸分析法、滑動平均法、指數平滑法、周期(季節)變化分析和隨機變化分析等。比較復雜的預測分析需要建立計量經濟模型,求解模型中的參數又有許多方法。
2. 大數據分析方法有哪些
1、因子分析方法
所謂因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如影像分析法,重心法、最大似然法、最小平方法、α抽因法、拉奧典型抽因法等等。
2、回歸分析方法
回歸分析方法就是指研究一個隨機變數Y對另一個(X)或一組變數的相依關系的統計分析方法。回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析方法運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
3、相關分析方法
相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系。
4、聚類分析方法
聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,不需要事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。
5、方差分析方法
方差數據方法就是用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。
6、對應分析方法
對應分析是通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
3. 大數據預測分析方法有哪些
1、可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3、預測性分析能力
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。 當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
這是一條來自#加米穀大數據-專注大數據人才培養#的小尾巴
4. 如何通過大數據分析做市場調研
大數據時代新的市場研究方法使「無干擾」真實還原消費過程成為可能,智能化的信息處理技術使低成本、大樣本的定量調研成為現實,這將推動消費行為及消費心理研究達到一個新的高度,幫助快速消費品企業更為精準地捕捉商機。大數據時代的市場研究方法主要體現在以下四個方面。
1.基於互聯網進行市場調研提高了效率,降低了成本
網路調研具有傳統調研方法無可比擬的便捷性和經濟性。快速消費品企業在其門戶網站建立市場調研板塊,再將新產品郵寄給消費者,消費者試用後只要在網站上點擊即可輕松完成問卷填寫,其便利性大大降低了市場調研的人力和物力投入,也使得消費者更樂於參與市場調研。同時,網路調研的互動性使得企業在新產品尚處於概念階段即可利用3D擬真技術進行產品測試,通過與消費者互動,讓消費者直接參與產品研發,從而更好地滿足市場需求。
2. 挖掘網路社交平台信息成為研究消費態度及心理的新手段
QQ、微博、微信等社交平台已日漸成為新生代消費群體不可或缺的社交工具,快速消費品的消費者往往有著極高的從眾性,因此針對社交平台的信息挖掘成為研究消費潮流趨勢的新手段。例如,通過微博評論可以統計分析消費者對某種功能型產品的興趣及偏好,這對研究消費態度及心理有非常大的幫助。更重要的是,這類信息屬於消費者主動披露,與訪談形式的被動挖掘相比信息的真實性更高。
3. 移動終端提供了實時、動態的消費者信息
隨著3G網路及智能手機普及,市場研究已滲透到移動終端領域。大量的手機APP應用(例如二維碼掃描等)為實時採集消費信息提供了可能性,移動終端的信息分析在購買時點、產品滲透率及回購率、獎勵促銷效果評估等方面將發揮不可估量的作用。
4. 零售終端信息採集系統幫助企業了解市場
目前,PC-POS系統在零售終端得到了廣泛的應用,只要掃描產品條形碼,消費者購買的產品名稱、規格、購進價、零售價、購買地點等信息就可以輕松採集。通過構建完整的零售終端信息採集系統,快速消費品企業可以掌握商業渠道的動態信息,適時調整營銷策略。
環顧四周,在每個行業中,大數據的增長正在改變我們收集、存儲、分析和應用數據的方式。正如很多公司目前正在收集整理的那樣,大家面臨的共同問題是智能化信息採集、儲存及分析。
l 超大容量的數據倉庫。數據倉庫具有容量大、主題明確、高度集成、相對穩定、反映歷史變化等特點,可以有效地支撐快速消費品企業進行大數據分析與應用。數據倉庫可以更有效地挖掘數據資源,並可以按照日、周、月、季、年等周期提供分析報表,有助於營銷人員更有效地制定營銷戰略。
l 專業、高效的搜索引擎。旅遊搜索、博客搜索、購物搜索、在線黃頁搜索等專業搜索引擎已經得到了廣泛應用,快速消費品企業可以根據自己的特點構建專業化的搜索引擎,對相關的企業信息、產品信息、消費者評價信息、商業服務信息等數據進行智能化檢索、分類及搜集,形成高度專業化、綜合性的商業搜索引擎。
l 基於雲計算的數學分析模型。市場研究的關鍵是洞察消費者需求,基於雲計算的數學分析模型可以將碎片化信息還原為完整的消費過程信息鏈條,更好地幫助營銷人員研究消費行為及消費心理。這些碎片化的信息包括消費者在不同時間、不同地點、不同網路應用上發布的消費價值觀信息、購買信息、產品評論信息等。基於雲計算的智能化分析,一方面可以幫助市場研究人員對消費行為及消費心理進行綜合分析,另一方雲計算成本低、效率高的特點非常適合快速消費品企業數據量龐大的特性。
傳統的市場研究包括定性研究及定量研究,以座談會為主的定性研究受制於主持人的訪談技巧,以街頭攔截訪問為主的定量研究雖然以嚴謹的抽樣理論為基礎,但同樣不能完全代表總體的客觀情況。而大數據時代革命性的調研方法為市場研究人員提供了以「隱形人」身份觀察消費者的可能性,超大樣本量的統計分析使得研究成果更接近市場的真實狀態。
與此同時,大數據時代的新方法、新手段也帶來新的問題,一是如何智能化檢索及分析文本、圖形、視頻等非量化數據,二是如何防止過度採集信息,充分保護消費者隱私。雖然目前仍然有一定的技術障礙,但不可否認的是大數據市場研究有著無限廣闊的應用前景。