❶ 礦物物相及結構分析方法
在礦物物相分析和晶體結構研究中,最常用的方法是粉晶和單晶X射線衍射分析,其次為紅外和拉曼光譜分析、熱分析及陰極發光分析等。
1.X射線分析法
本方法在礦物晶體結構分析、礦物鑒定和研究等方面起著極其重要的作用,已成為不可缺少的常規分析手段。
X射線是一種波長很短(0.01~1nm)的電磁波,在實驗室里它是通過一個高度真空的玻璃或陶瓷管(X射線管)產生的。X射線管中有兩個金屬電極,陰極為鎢絲捲成,陽極為某種金屬的磨光面(習稱「靶」)。用兩根導線通入陰極3~4A的電流,在鎢絲周圍產生大量熱電子。在陰極和陽極之間加以高電壓(30~50 kV),鎢絲周圍的熱電子即向陽極作加速度移動。當高速運動的電子與陽極相碰時,運動驟然停止,電子的能量大部分變為熱能,少部分變成X射線由靶面射出。射入晶體的X射線(稱原始X射線S0),引起晶體中原子的電子振動,這些電子因而發出與原始X射線波長相同的次生X射線(如S1、S2)。晶體中各原子所射出的次生X射線在不同方向上具有不同的行程差,當某些方向上的行程差等於波長的整數倍時,X射線便相互疊加(增強)成為衍射線,通過探測器即可收集到衍射數據。
圖24-6 面網對X射線的衍射
圖24-6中各點代表晶體中相當的原子,面網1,2,3是一組平行的面網,面網間距為d,波長為λ的原始X射線S0沿著與面網成θ角(掠射角)的方向射入,並在S1方向產生「反射」。產生「反射」(即衍射)的條件是相鄰面網所「反射」的X射線的行程差等於波長的整數倍,即:nλ=2dsinθ(n=1,2,3,…整數,稱為「反射」的級次)。此式經轉換可得到
結晶學與礦物學
式中:dhkl為面網(hkl)的面網間距;θhkl為面網(hkl)的掠射角;λ為波長。該公式稱為布拉格公式。
X射線衍射分析是通過儀器得到晶體的面網間距d和衍射線的相對強度I/I0兩組衍射數據,根據衍射數據進行物象分析。
X射線衍射分析有粉晶(多晶)衍射分析和單晶衍射分析兩種方法。粉晶衍射採用粉末狀(1~10μm)多晶為樣品(50~100 mg),粉晶衍射儀通過轉動2θ角,用輻射探測器和計數器測定並記錄衍射線的方向和強度,獲得衍射圖譜(圖24-7)。衍射圖中每個衍射峰代表一組面網。每組面網的面網間距d直接列印在峰上,它的衍射強度與峰高成正比,用相對強度表示,即以最強峰的強度作為100,將其他各衍射峰與之對比確定相對強度I/I0。獲得衍射數據後,與鑒定表(ICDD卡片或其他礦物X射線鑒定表)中標准數據對比,即可作出礦物鑒定,也可採用計算機資料庫檢索分析軟體進行輔助鑒定。
粉晶衍射物相分析快速簡便,解析度高,記錄圖譜時間短,精度高,用計算機控制操作和進行數據處理,可直接獲得衍射數據,對礦物定性、定量都十分有效,目前已得到了廣泛的應用。
單晶衍射分析一般採用小於0.2~0.5mm的單個晶體(或單晶碎片)為測試樣品。目前較多用四圓測角系統的單晶衍射儀。它是通過一束單色X射線射入單晶樣品,用計算機控制4個圓協同作用,調節晶體的取向,使某一面網達到能產生衍射的位置,用計數器或平面探測器記錄衍射方向和強度。據此,可測定晶胞參數,確定空間群,求解原子坐標,計算鍵長、鍵角,最終得到晶體結構數據。
圖24-7 單晶硅粉末衍射圖(Mo靶)
2.紅外光譜和拉曼光譜分析法
紅外光譜(IR)為紅外波段電磁波(波長0.75~1000μm;頻率13333~10cm-1)與物質相互作用而形成的吸收光譜,是物質分子振動的分子光譜,反映分子振動的能級變化及分子內部的結構信息。
紅外吸收光譜是由礦物中某些基團分子不停地作振動和轉動運動而產生的。分子振動的能量與紅外射線的光量子能量相當,當分子的振動狀態改變時,就可以發射紅外光譜,而因紅外輻射激發分子振動時便產生紅外吸收光譜。分子的振動能量不是連續而是量子化的,但由於分子在振動躍遷過程中也常伴隨轉動躍遷,使振動光譜呈帶狀(圖24-8)。分子越大,紅外譜帶也越多。將一束不同波長的紅外光照射到礦物上,某些特定波長的紅外射線被吸收,就形成了這個礦物的紅外吸收光譜。每種礦物都有由其組成和結構決定的獨有的紅外吸收光譜,可以採用與標准化合物的紅外光譜對比的方法來做分析鑒定。
紅外光譜儀有兩類。一類是單通道測量的棱鏡和光柵光譜儀,屬色散型,它的單色器為棱鏡或光柵。另一類為傅里葉變換紅外光譜儀,它是非色散型的,有許多優點:可實現多通道測量,提高信噪比;光通量大,提高了儀器的靈敏度;波數值的精確度可達0.01cm-1;增加動鏡移動距離,可使分辨本領提高;工作波段可從可見區延伸到毫米區,可以實現遠紅外光譜的測定。
圖24-8 石英的紅外光譜圖
拉曼光譜(RS)為分子振動能級間的躍遷產生的聯合散射光譜。用單色光照射透明樣品時,一部分光子與樣品分子發生非彈性碰撞,進行能量交換(因分子大多處於基態,故光子通常將損失能量)後成為拉曼散射光。入射光頻率(v)與散射光頻率(v′)之差等於分子的某一簡正振動頻率(vi),而物質振動的頻率及強度由物質內部分子的結構和組成決定,因此,拉曼散射譜線能夠給出物質的組成和分子內部的結構信息。
現代激光拉曼光譜儀除其主要部件激發源(氬離子激光)、樣品室、信號檢測系統和數據處理系統外,還常加裝顯微鏡,構成顯微拉曼探針儀。其空間解析度為1μm2,檢測限為10-9~10-12g,是微粒、微區、微結構中的分子類別及含量鑒定的有力工具。
近幾十年來,紅外和拉曼光譜技術不斷有新的發展,成為礦物學和礦床地球化學研究的重要手段。此外,隨著寶玉石業的蓬勃發展,作為非破壞、快速鑒定的方法,紅外、拉曼光譜也在寶玉石鑒定中被廣泛認可和使用。
3.熱分析法
熱分析法是根據礦物在不同溫度下所發生的熱效應來研究礦物的物理和化學性質,目的在於求得礦物的受熱(或冷卻)曲線,以確定該礦物在溫度變化時所產生的吸熱或放熱效應。此法常用於鑒定肉眼或其他方法難以鑒定的隱晶質或細分散的礦物;特別適於鑒定和研究含水、氫氧根和二氧化碳的化合物,如粘土礦物、鋁土礦、某些碳酸鹽礦物、含水硼酸鹽及硫酸鹽礦物、非晶質的鈮、鉭礦物等;還可以測定礦物中水的類型。
熱分析法包括熱失重分析和差熱分析。
一些礦物在受熱後可能發生脫水、分解、排出氣體、升華等熱效應引起物質質量發生變化,在程序控溫下測量物質和溫度變化關系的方法稱熱重分析法,在加熱過程中測量得到物質質量和溫度的關系曲線稱熱失重曲線(圖24-9)。在含水礦物中測定礦物在不同溫度條件下失去所含水分的質量而獲得溫度-質量曲線,從而查明水在礦物中的賦存狀態和水在晶體結構中的作用。不同含水礦物具有不同的脫水曲線。利用這種方法,可以鑒定和研究含水礦物,如粘土礦物等。
操作過程是:從低溫起至高溫(1000℃左右)止逐漸以各種不同的固定溫度加熱礦物,至質量不再變化為止,然後稱礦物的質量,算出因加熱而損耗的質量(脫出的水分質量)。以損失質量的百分數及加熱的溫度為縱橫坐標繪成曲線,即得失重曲線。
圖24-9 熱失重曲線圖
差熱分析法是將礦物粉末與中性體(不產生熱效應的物質,常用煅燒過的Al2O3)分別同置於一高溫爐中,在加熱過程中,礦物發生吸熱(因相變、脫水或分解作用等引起)或放熱(因結晶作用、氧化作用等引起)效應,而中性體則不發生此效應,將兩者的熱差通過熱電偶,借差熱電流自動記錄出差熱曲線,線上明顯的峰、谷分別代表礦物在加熱過程中的吸熱和放熱效應。不同的礦物在不同的溫度階段,有著不同的熱效應。由此可與已知礦物標准曲線進行對比來鑒定礦物。本方法對粘土礦物、氫氧化物、碳酸鹽和其他含水礦物的研究最有效。
目前,礦物的差熱分析法有了很大的進展,不僅用來定性地鑒定礦物,有時還可以做定量分析、探討礦物在加熱時結構的變化和研究礦物的類質同象混入物等。差熱分析曲線的解釋如下:
1)含水礦物的脫水:普通吸附水脫水溫度為100~110℃;層間結合水或膠體水脫水溫度在400℃內,大多數在200或300℃內;架狀結構水脫水溫度400℃左右;結晶水脫水溫度在500℃內,分階段脫水;結構水脫水溫度在450℃以上。
2)礦物分解放出氣體:CO2,SO2等氣體的放出,曲線有吸熱峰。
3)氧化反應表現為放熱峰。
4)非晶態物質的析晶表現為放熱峰。
5)晶型轉變通常有吸熱峰或放熱峰。
6)熔化、升華、氣化、玻璃化轉變顯示為吸熱峰。
差熱分析有一定的局限性,只適用於受熱後有明顯的物理、化學變化的物質,並有許多干擾因素而影響效果。因此,它必須和其他測試方法結合起來,如和X射線分析、電子顯微鏡、化學分析等密切配合使用。
4.陰極發光分析法
陰極發光是物質表面在高能電子束轟擊下發光的現象。不同礦物或相同種類不同成因的礦物,在電子束的轟擊下,會發出不同顏色或不同強度的光,同時能顯示與晶體生長環境有關的晶體結構或生長紋,可輔助礦物鑒定。
陰極射線發光分析方法是研究礦物結構和能態的一種重要方法。近年來,這種分析方法的靈敏度和功能等都獲得很大改善,特別是在掃描電鏡中,將陰極射線發光、二次電子、背散射電子和X射線特徵譜等結合起來形成的綜合測量方法,成為研究礦物結構和微區性質的有力工具。
❷ 任務了解礦物鑒定的常用方法
一、鑒定礦物的化學方法
礦物鑒定的化學方法包括簡易化學分析和化學全分析。
(一)簡易化學分析法
簡易化學分析法,就是以少數幾種葯品,通過簡便的試驗操作,能迅速定性地檢驗出樣品 (待定礦物)所含的主要化學成分,達到鑒定礦物的目的。常用的有斑點法、顯微化學分析法及珠球反應等。
1.斑點法
這一方法是將少量待定礦物的粉末溶於溶劑 (水或酸)中,使礦物中的元素呈離子狀態,然後加微量試劑於溶液中,根據反應的顏色來確定元素的種類。這一試驗可在白瓷板、玻璃板或濾紙上進行。此法對金屬硫化物及氧化物的效果較好。
現以測試黃鐵礦中是否含鎳 (Ni)為例,說明斑點法的具體做法。將少許礦粉置玻璃板上,加一滴HNO3並加熱蒸干,如此反復幾次,以便溶解進行完全,稍冷後加一滴氨水使溶液呈鹼性,並用濾紙吸取,再在濾紙上加一滴2%的二甲基乙二醛肟酒精溶液(鎳試劑),若出現粉紅色斑點 (二甲基乙二醛鎳),表明礦物中確有鎳的存在。因此該礦物應為含鎳黃鐵礦。
2.顯微化學分析法
該法也是先將礦物製成溶液,從中吸取一滴置載玻片上,然後加適當的試劑,在顯微鏡下觀察反應沉澱物的晶形和顏色等特徵,即可鑒定出礦物所含的元素。
這種方法用來區別某些相似礦物是很有效的,例如呈緻密塊狀的白鎢礦Ca[WO4]與重晶石Ba[SO4]相似,此時只要在前者的溶液中滴一滴1∶3H2SO4,如果出現石膏結晶(無色透明,常有燕尾雙晶),表明要鑒定的礦物為白鎢礦而不是重晶石。
3.珠球反應
這是測定變價金屬元素的一種靈敏而簡易的方法。測定時將固定在玻璃棒上的鉑絲之前端彎成一直徑約為1mm的小圓圈,然後放入氧化焰中加熱。清污後趁熱粘上硼砂 (或磷鹽),再放入氧化焰中煅燒,如此反復幾次,直到硼砂熔成無色透明的小球為止。此時即可將灼熱的珠球粘上疑為含某種變價元素的礦物粉末 (注意!一定要少),然後將珠球先後分別送入氧化焰及還原焰中煅燒,使所含元素發生氧化、還原反應,借反應後得到的高價態和低價態離子的顏色來判定為何種元素。例如在氧比焰中珠球為紅紫色,放入還原焰中煅燒一段時間後變為無色時,表明所試樣品應為含錳礦物,具體礦物的名稱可根據其他特徵確定之。
(二)化學全分析
化學全分析包括定性和定量的系統化學分析。進行這一分析時需要較為繁多的設備和標准試劑,需要較純 (98%以上)和較多的樣品,需要較高的技術和較長的時間。因此,這一方法是很不經濟的,除非在研究礦物新種和亞種的詳細成分、組成可變礦物的成分變化規律以及礦床的工業評價時才採用。通常在使用這一方法之前,必須進行光譜分析,得出分析結果以備參考。
二、鑒定礦物的物理方法
礦物鑒定的物理方法是以物理學原理為基礎,藉助各種儀器測定礦物的各種物理性質來鑒定礦物。主要方法有:
1.偏光顯微鏡和反光顯微鏡鑒定法
偏光顯微鏡鑒定方法是根據晶體的均一性和異向性,並利用晶體的光學性質而鑒定礦物的方法。應用這種方法時,須將礦物、岩石磨製成薄片,在透射光作用下,觀察和測定礦物的晶形、解理和各項光學性質 (顏色、多色性、突起、干涉色、折射率、雙折射、消光類型、消光角、延性符合以及軸性、光性符號等)。
反光顯微鏡 (也稱礦相顯微鏡)主要用以觀察和測定不透明礦物 (金屬礦物)的光學性質 (礦物的反射率、雙反射率、反射色、反射多色性、內反射等),以確定礦石礦物成分、礦石結構、構造及礦床成因方面的問題。
2.電子顯微鏡研究法
電子顯微鏡研究法是一種適宜於研究粒度在1μm以下的微粒礦物的方法,尤以研究粒度小於5μm的具有高分散度的黏土礦物最為有效。可分為掃描電子顯微鏡和透射電子顯微鏡兩種方法。
黏土類礦物由於顆粒極細 (一般2μm左右),常呈分散狀態,研究用的樣品需用懸浮法進行制備,待乾燥後,置於具有超高放大倍數的電子顯微鏡下,在真空中使通過聚焦系統的電子光束照射樣品,可在熒光屏上顯出放大數十萬倍甚至百萬倍的礦物圖像,據此以研究各種細分散礦物的晶形輪廓、晶面特徵、連晶形態等,用此來區別礦物和研究它們的成因。
此外,超高壓電子顯微鏡發出的強力電子束能透過礦物晶體,這就使得人們長期以來夢寐以求的直接觀察晶體結構和晶體缺陷的願望得到實現。
3.X射線分析法
X射線分析法是基於X射線的波長與結晶礦物內部質點間的距離相近,屬於同一個數量級(Å),當X射線進入礦物晶體後可以產生衍射。由於每一種礦物都有自己獨特的化學組成和晶體結構,其衍射圖樣也各有其獨有的特徵。對這種圖樣進行分析計算,就可以鑒定結晶礦物的相 (每個礦物種就是一個相),並確定它內部原子 (或離子)間的距離和排列方式。因此,X射線分析已成為研究晶體結構和進行物相分析的最有效方法。
4.光譜分析
光譜分析法的理論基礎是,各種化學元素在受到高溫光源 (電弧或電火花)激發時,都能發射出它們各自的特徵譜線,經棱鏡或光柵分光測定後,既可根據樣品所出現的特徵譜線進行定性分析,也可按譜線的強度進行定量分析。這一方法是目前測定礦物化學成分時普遍採用的一種分析手段。其主要優點是樣品用量少 (數毫克),能迅速准確地測定礦物中的金屬陽離子,特別是對於稀有元素也能獲得良好的結果。缺點是儀器復雜昂貴,並需較好的工作條件。
5.電子探針分析
電子探針分析是一種最適用於測定微小礦物和包體成分的定性、定量以及稀有元素、貴金屬元素賦存狀態的方法。其測定元素的范圍由從原子序數為5的硼直到92的鈾。儀器主要由探針、自動記錄系統及真空泵等部分組成,探針部分相當於一個X射線管,即由陰極發出來的高達35~50kV的高速電子流經電磁透鏡聚焦成極細小 (最小可達0.3μm)的電子束——探針,直接打到作為陽極的樣品上,此時,由樣品內所含元素發生的初級X射線 (包括連續譜和特徵譜),經衍射晶體分光後,由多道記數管同時測定若干元素的特徵X射線的強度,並用內標法或外標法算出元素含量。
6.紅外吸收光譜
簡稱紅外光譜,是在紅外線的照射下引起分子中振動能級 (電偶極矩)的躍遷而產生的一種吸收光譜。由於被吸收的特徵頻率取決於組成物質的原子量、鍵力以及分子中原子分布的幾何特點,即取決於物質的化學組成及內部結構,因此每一種礦物都有自己的特徵吸收譜,包括譜帶位置、譜帶數目、帶寬及吸收強度等。
紅外吸收光譜分析樣品一般需要1.5mg,最常使用的制樣方法是壓片法,即把試樣與KBr一起研細,壓成小圓片,然後放在儀器內測試。
目前紅外吸收光譜分析在礦物學研究中已成為一種重要的手段。根據光譜中吸收峰的位置和形狀可以推斷未知礦物的結構,是X射線衍射分析的重要輔助方法,依照特徵峰的吸收強度來測定混入物中各組分的含量。此外,紅外光譜分析對考察礦物中水的存在形式、配陰離子團、類質同象混入物的細微變化和礦物相變等方面都是一種有效的手段。
三、鑒定礦物的物理-化學方法
當前用於礦物鑒定最主要的物理-化學方法有熱分析、極譜分析及電滲分析等。其中,熱分析是一種較為普遍的方法,幾乎適用於各類礦物,特別是對黏土礦物,以及碳酸鹽、硫酸鹽、氫氧化物礦物的鑒定最為有效。
熱分析法是根據礦物在不同溫度下所發生的脫水、分解、氧化、同質多象轉變等熱效應特徵,來鑒定和研究礦物的一種方法。它包括熱重分析和差熱分析。
1.熱重分析
熱重分析是測定礦物在加熱過程中的質量變化來研究礦物的一種方法。由於大多數礦物在加熱時因脫水而失去一部分質量,故又稱失重分析或脫水試驗。用熱天平來測定礦物在不同溫度下所失去的質量而獲得熱重曲線。曲線的形式決定於水在礦物中的賦存形式和在晶體結構中的存在位置。不同的含水礦物具有不同的脫水曲線。
這一方法只限於鑒定、研究含水礦物。
2.差熱分析
礦物在連續地加熱過程中,伴隨物理—化學變化而產生吸熱或放熱效應。不同的礦物出現熱效應時的溫度和熱效應的強度是互不相同的,而對同種礦物來說,只要實驗條件相同,則總是基本固定的。因此,只要准確地測定了熱效應出現時的溫度和熱效應的強度,並和已知資料進行對比,就能對礦物做出定性和定量的分析。
差熱分析法的具體工作過程是,將試樣粉末與中性體 (在加熱過程中不產生熱效應的物質,通常用煅燒過的Al2O3)粉末分別裝入樣品容器,然後同時送入一高溫爐中加熱。
由於中性體是不發生任何熱效應的物質,所以在加熱過程中,當試樣發生吸熱或放熱效應時,其溫度將低於或高於中性體。此時,插在它們中間的一對反接的熱電偶 (鉑-銠-鉑熱電偶)將把兩者之間的溫度差轉換成溫差電動勢,並借光電反射檢流計或電子電位差計記錄成差熱曲線。
圖1-1中的實線曲線為高嶺石的差熱曲線,其橫坐標表示加熱溫度 (℃),縱坐標表示發生熱效應時樣品與中性體的溫度差 (ΔT)。高嶺石的差熱曲線特點是:在580℃時,由於結構水 (OH)-的失去和晶格的破壞而出現一個大的吸熱谷,980℃時,因新結晶成γ-Al2O3,而顯出一個尖銳的放熱峰。
圖1-1 高嶺石差熱曲線(1)和脫水曲線(2)
差熱分析的優點是樣品用量少 (100~200mg),分析時間短 (90min以下),而且設備簡單,可以自行裝置。缺點是許多礦物的熱效應數據近似,尤其當混合樣品不能分離時,就會互相干擾,從而使鑒定工作復雜化。為了排除這種干擾,應與其他方法 (特別是X射線分析)配合使用。
對非專業鑒定人員而言,主要是根據工作的目的、要求和具體條件,正確地選擇適當而有效的測試方法 (表1-1),按送樣要求進行加工,並正確地使用測試結果。
表1-1 礦物鑒定方法的選擇
續表
以上介紹的是目前最常使用的方法,其他方法還很多,如中子活化分析、核磁共振、順磁共振、穆斯堡爾效應、包裹體研究、穩定同位素研究等,需要時可查閱專門資料。
學習指導
通過學習情境的學習了解礦物鑒定的基本方法,目的是為了我們在今後工作中知道怎樣去鑒定礦物,並不要求我們掌握所有的鑒定方法,目前只需要掌握肉眼鑒定和簡易化學試驗方法即可,但要知道鑒定礦物的一般步驟、正確選擇鑒定方法。
練習與思考
1.名詞解釋
礦物 礦物鑒定 肉眼鑒定 儀器鑒定
2.選擇題
(1)確定礦物的外部特徵採用哪種方法? ()
A.肉眼鑒定法
B.顯微鏡
C.化學分析
D.核磁共振
(2)測定礦物的化學成分用哪種方法? ()
A.均一法
B.光譜分析
C.熱分析
D.質譜分析
(3)測定礦物某種物性或晶體結構數據採用哪種方法? ()
A.冷凍法
B.簡易化學分析法
C.電子顯微鏡
D.中子活化分析
3.簡答題
(1)怎樣鑒定礦物? 怎樣選擇礦物鑒定方法?
(2)肉眼鑒定礦物時應注意的問題?
❸ 各類礦物的定量分析
電子探針分析的對象是固體無機材料,如合金和礦物等。通用的ZAF修正程序對合金分析比較有效;但用於各類礦物分析時,由於各類礦物具有不同的化學組成和化學物理性質,因而在選擇實驗條件時,或在選擇修正方法時均要作一些特殊的考慮,才能取得較好的分析結果。本節僅對幾類較為常見的礦物,如硅酸鹽氧化物、含鉀鈉鹼金屬的礦物和玻璃、硫化物、黏土礦物等較為特殊的定量分析作某些討論。
89.3.2.1 硅酸鹽及其他含氧礦物的分析
這類礦物包括氧化物、硅酸鹽、碳酸鹽、硫酸鹽、硼酸鹽、砷酸鹽等以及其他一切含氧鹽類。這些礦物的化學組成中都含有超輕元素氧,即使採用ZAF法或ZAF氧化物法修正,也總不能獲得較好的結果。所以盡管早期的α因子經驗修正法校正目前較少使用,仍是一個值得參考的方法。
硅酸鹽、氧化物的α因子經驗修正法基於任何一個復雜的含氧礦物或化合物均可看做是由簡單的端元氧化物,如H2O、CO2、Na2O、MgO、Al2O3、SiO2、P2O5、SO3、K2O、CaO、TiO2、Cr2O3、MnO、FeO、NiO、R2O3、PbO等組成,據此進行端元體系中含氧礦物的修正計算。如硅灰石CaSiO3可看是CaO和SiO2兩個端元氧化物組成的礦物。只要當CaO對SiKα的α因子和SiO2對CaKα的α因子已知,就可以按照T.O.Ziebold等人提出的二元或多元合金的α因子法進行修正,氧元素不作任何單獨考慮。即對上述圖CaSiO3這樣一個兩端元系統中,令A、B分別代表CaSiO3中的兩個端元氧化物。αAAB和αBAB分別代表A、B端元氧化物的α因子,wAAB和wBAB分別為A、B兩端元的質量分數(%)。α因子近似於ZAF法3項修正因子的乘積。
岩石礦物分析第四分冊資源與環境調查分析技術
事實上自然界的氧化物總是由A、B、C……n多端元氧化物組成,故引入多元修正因子β,並令 ,以u代替多端元ABC……n,則得
式中kAu是試樣中A元素的相對強度比,即IAu/IAA,所以:
岩石礦物分析第四分冊資源與環境調查分析技術
這里wAu是該多端元試樣中A端元氧化物的質量分數(%),βAu為A端元組分的修正因子,IAu為A元素的特徵X射線強度。由於純端元氧化物標樣不易獲得等原因,實際工作中常用多端元化合物作標樣,此時未知試樣A端元氧化物的質量分數(%)可由下式求得:
岩石礦物分析第四分冊資源與環境調查分析技術
式中:wAws、IAws和βAws分別表示兩端元或多端元標樣中A端元氧化物含量、特徵X射線強度和修正因子β。
因此,在實際工作中,只要試樣和標樣的β值已知,即可從測量數據算得試樣中A端元氧化物的含量。修正因子β可由二元系統中α因子推算而得。在多元系統中某端元A的修正因子β應是各端元(包括端元A本身)對A元素特徵X射線的修正因子α的重量加權,即可用下式表示:
岩石礦物分析第四分冊資源與環境調查分析技術
由此可知,α和β因子是以簡單氧化物為端元組分進行經驗修正計算的最基本參數,而其中只要知道每個端元組分的α值,任一多元體系的每一元素的β值便能推算出來。從這個意義來說,α因子是本經驗方法的最基本參數,其精度直接影響本方法的精度。合理確定α值是重要的基本工作。
用α因子作經驗修正,除了要有精確的α因子數值外,在做定量分析時還必須准確選擇實驗條件,確定過量氧的影響,准確選擇標樣等。
硅酸鹽氧化物主要由原子序數11~28的元素組成,所以通常選擇的工作電壓為15kV,束流為2×10-8A。當其主要的組成為重元素時,則應選用較高的工作電壓及其相應的α因子值,如分析鋯鉿、稀土、鎢鉬鉛和鈾等硅酸鹽氧化物時。此外,對於一些含水或含鹼金屬元素的硅酸鹽,由於在電子束轟擊下易發生變化,而且這些礦物通常不易磨平,束斑通常可選用10μm或20μm。
由於氧對大多數元素的X射線強度有較大影響,還應關注過量氧的影響。經驗修正通常只用低價氧化物作為端元組分,α因子表中也只給出低價氧化物的α值,故必須考慮高價氧化物中過量氧的影響。在計算試樣中某一端元組分的β因子時,必須包括試樣中的全部氧。此外,許多礦物和岩石中含有少量的H2O、OH等組分,它們對各種元素的特徵X射線的影響與過量氧相近。為便於修正計算,上述組分通常都可視作為過量氧處理,以算出各實測元素的β值。當然也有要分別考慮的情況,如分析磁鐵礦和沸石類礦物時,在FeO-O2系統中,過量氧對FeO的α值為1.135;而FeO-O2系統中,水對FeO的α值約為1.25。
鑒於上述原因,在計算某些同時含有高價或低價氧化物的礦物,如鉻尖晶石類礦物時,應根據礦物的化學結構式正確估算FeO和Fe2O3的比值,以確定過剩氧的影響。
標樣的選擇更是一個重要的前提,通常都選用氧化物。可以是端元氧化物,也可以是兩端元氧化物或多端元氧化物或硅酸鹽,選擇一個與試樣組成相近的同類礦物為最理想,這就是需要更多種類標樣的原因。表89.6列舉了常用的氧化物、硅酸鹽標准樣品。
表89.6 常用的氧化物、硅酸鹽標准樣品
對岩石試樣,可用成分已知的硅酸鹽粉末或成分相近的同類岩石作為探針分析標樣,如某些花崗岩、閃長岩、超基性岩等。
用作標準的礦物、岩石樣品,應預先計算出各元素的修正系數β備用。要分析的硅酸鹽、氧化物和岩石試樣很多是屬於同一類型的,有了β因子值表,測量時便可立即估算所得數值加合是否達到百分之百。若試樣的組成與預算礦物相近,則可直接用於計算。這對於快速一級近似定量分析更為優越。特別值得一提的是根據預算的β值,可以假設一個與試樣成分最為接近的初始值,以減少迭代計算的次數,甚至只需作一次修正,就使修正後的值與假定值很接近,無需再進行計算,大大地節省修正計算的工作量。
α經驗修正法和ZAF氧化物法都有待於進一步完善和發展,以提高修正法的精度和准確度等,有以下幾個方面值得注意:
1)地質試樣中常見的一些碳酸鹽、磷酸鹽和硫酸鹽等礦物,在一些文獻中也初步列了有關的α因子,用經驗修正方法可以得到較好的分析結果。在實際分析中應用較少,需進一步做些基礎研究工作,使其普遍應用。
2)硫化物大多屬於有用礦物,是地質工作者的重要研究對象。這類不透明礦物用通常的光學顯微鏡鑒定較困難,使用電子探針較為容易。鑒於硫化物的化學性質與氧化物、硅酸鹽差別很大,但從各自的大類來說有相似的特點。如能提供一組有關常見硫化物(包括硫酸鹽)中各元素的或端元硫化物的α值,將非常有意義,應是一個發展方向。
3)有人提出以某些更為復雜的礦物為端元組分的因子,並提出元素、氧化物和礦物的因子互算問題,對於擴大這種經驗修正方法的使用范圍很有意義。礦物的α因子的提出,對某些種類礦物的鑒定分析更為便利。例如,對於Na-K-Ca-Sr-Ba長石、Mg-Ca-Mn-Fe-Ni橄欖石、Ca-Mg-Fe-Mn碳酸鹽等類質同象系列的礦物,若能推算出比較正確的α因子,即可迅速簡便地分析出類質同象系列中端元礦物的質量分數(%)。如在斜長石系列中,即可立即分別算出鈉長石(NaAlSi3O8)和鈣長石(CaAl2Si2O8)的含量,直接鑒定出斜長石的類別。
4)對於長石、輝石、橄欖石等類質同象系列礦物,用α因子經驗修正法預先算出一系列的X射線強度,並與其對應的成分作成圖表或編製成程序,對類質同象系列礦物進行快速測點,效果極為理想,見表89.7。
表89.7a 斜長石-鈉長石系列中Ca、NaK系X射線相對強度和化學成分
續表
表89.7b 正長石系列中K、NaK系X射線相對強度和化學成分
89.3.2.2 硫化物及硫酸鹽的定量分析
硫化物及硫鹽礦物都屬不透明金屬礦物,它們是組成Co、Ni、Cu、Ag、Pb、Zn、Sb、Bi、Hg等多種金屬礦床的主要礦物。這些礦物的電子探針分析研究不僅直接關系著礦產的綜合評價與綜合利用,也是研究礦床成因的重要基礎;同時,硫化物和硫鹽礦物的復雜的結晶化學的深入研究,也有助於材料科學的進一步發展。所以,在地質學領域內,硫化物和硫鹽的電子探針分析具有重要的意義。
自然界生成硫化物和硫鹽礦物的元素主要有:Fe、Co、Ni、Cu、Zn、As、Ag、Cd、Sn、Sb、Hg、Pb、Bi等,它們和硫形成的化學鍵有離子鍵、共價鍵和金屬鍵。按說,這類礦物的電子探針定量分析應問題不大,因為這類礦物中除S為非金屬以外,其餘均為金屬或半金屬元素,所形成的礦物多為導體或半導體,一般不需鍍膜即可進行分析。實際情況並非如此,有時即使分析一個成分最簡單的黃鐵礦(FeS2)、磁黃鐵礦(Fe1-xS)或方鉛礦(PbS)也得不到理想的結果,其主要原因有以下幾個方面。
1)硫化物和硫鹽與硅酸鹽和氧化物的化學組成不一樣。例如在橄欖石中,Fe和Mg的離子半徑、電荷電子活性完全相似,Mg2SiO4和Fe2SiO4之間可以形成固溶體。硫化物之間的替代就不那麼簡單。硅酸鹽中沒有Si-Si鍵,O-O鍵,在硫化物中有金屬-金屬鍵和S-S鍵。所以,在硫化物形成過程中,金屬元素的替代不一定是一一對應的。例如,磁黃鐵礦中Fe和S就不是1∶1的關系,原因就在於硫化物中不只是有金屬-硫鍵,還有金屬-金屬鍵和S-S鍵。黝銅礦的理論化學式為Cu3SbS4,但實測的化學式常常為Cu12Sb4S13或Cu12+xSb4S13,原因就在於其中有Sb-S鍵、Sb-Sb鍵或S-S鍵。
從這一點來說,硫化物的分子式比硅酸鹽更復雜,這就增加了定量分析的難度。例如,磁黃鐵礦有許多類型,通常至少可區分為六方磁黃鐵礦和單斜磁黃鐵礦。前者含Fe原子百分比為47.0%~47.8%,其分子式可表達為Fe11S12-Fe9S10。後者Fe原子百分比為46.5%~47%,其分子式為Fe7S8。兩者硫成分的最大變化范圍為36.48%~39.13%。磁黃鐵礦本身又易氧化,因此,正確區分六方和單斜磁黃鐵礦並不十分容易。
2)硫化物和硫鹽礦物的硬度一般不大,磨光性能較好,樣品制備比較容易,因而制樣過程中可能產生的試樣表面狀態的改變和一些污染問題容易被忽略,影響定量分析的結果。實驗證明,用硅油作為懸浮液載體,以金剛砂磨料拋光黃銅礦,從表面向里可依次形成三層薄膜:①非晶質的Si、C、O污染層;②鐵的硫鹽層;③鐵的氧化物和富銅硫化物層。用氧化鉻磨料拋光時,則只見到③層。對於那些拋光後擱置在空氣中的黃銅礦,表面還會形成一些鐵氧化物,使其形成彩色暈斑。被包裹於硅酸鹽中的黃銅礦,這些次生層較薄,但包裹於硫化物中的黃銅礦次生層較厚。上述這些現象的產生,直接影響到定量分析的結果。當使用電子探針分析用硅油作載體的金剛砂拋光的黃銅礦時,分析結果的總量加合僅達98.08%左右,Cu、S、Fe系統偏低,其中以Cu最為明顯,約低1%,S次之。分析用氧化鉻拋光過的黃銅礦,只有Cu略有偏低。
3)硫化物和硫鹽的制樣過程中常常發生元素表面的擴散作用或相鄰礦物之間的沾污現象,引起顯著誤差。例如分析兩個產地含Ag量不同的黃銅礦,一個黃銅礦取自澳大利亞昆士蘭的Hilton礦,含Ag1500μg/g,呈類質同象,很少有銀礦物與它連生;另一個黃銅礦取自蘇聯西伯利亞的Bankofsky礦,它本身實際不含Ag,但被許多螺狀硫銀礦Ag2S包裹。採用不同的工作電壓進行測量,並用ZAF法和X射線分布函數!(ρz)法進行修正計算,獲得了兩種截然不同的情形(表89.8)。
表89.8 Hilton礦和Bankofaky礦的黃銅礦中Ag的分析結果
續表
Hilton的黃銅礦含Ag約1500μg/g,不隨工作電壓的改變而改變。Bankofsky礦的黃銅礦有兩種顏色,一種為橘黃色,含銀較高,一種為黃色,含銀量較低,且兩者都隨著工作電壓的升高而迅速降低,說明銀並不以類質同象存在於黃銅礦中,而是呈薄膜粘附於黃銅礦的表面。進一步研究還證實,Bankofsky礦的黃銅礦表面有一層Ag2S+Fe2O3的薄膜,若假定該層中的Ag含量為30%,那麼用!(ρZ)法推算該薄膜厚度約為150nm。
4)大多數硫化物和硫鹽對電子束轟擊是穩定的,但有些銀礦物,如螺狀硫銀礦、深紅銀礦、淡紅銀礦、硫銻銅銀礦、砷硫銻銅銀礦、硫砷銅銀礦等是不穩定的,各種元素的X射線計數強度將隨時間而變化。例如硫砷銅銀礦在電子束照射下,Cu、As、S的X射線強度逐漸降低,只有Ag的X射線強度逐漸增加。這是由於礦物受電子束轟擊分解後,Ag相對地集中於電子束照射部位而S蒸發所致。螺狀硫銀礦也有相似情形,當該礦物受到1×10-5μA/μm2電子束流轟擊時,剛開始時Ag減少,30s以後經過最低點而開始逐漸上升,並達到一定數值時即再繼續變化。含銀硫化物和硫鹽的這種不穩定狀態的變化是由礦物本身的特性和實驗條件所決定的,尚難用數學模式進行修正。因此,較好的辦法是:①噴鍍碳膜或適當加厚碳膜,以增加試樣的導電導熱能力,減少礦物的分解。如硫砷銅銀礦在噴鍍碳膜後可以使它對電子束的轟擊趨於穩定;②減小束流,增大束斑,降低試樣單位面積接收的電子數;③降低電壓;④分析中移動試樣。
5)目前硫化物的定量修正多數採用一般的ZAF法程序,這種修正本身也是分析誤差的一個來源。δ因子法雖然並不是硫化物的專用程序,但對硫化物比較適用。δ因子法是在α因子法的基礎上發展起來的。鑒於二元或多元體系(以純元素為端元)中下述線性關系不完全成立:
岩石礦物分析第四分冊資源與環境調查分析技術
如在Fe-Cr、Sb-S等二元體系中,Cr和S的wAAB/KAAB與wAAB的關系都表現為不同形式的曲線,在一些多元體系中則表現為一個曲面。因此,有人在α的基礎上引出了δ因子及其相應的修正公式:
岩石礦物分析第四分冊資源與環境調查分析技術
岩石礦物分析第四分冊資源與環境調查分析技術
其他元素B、C……n的βB、βC……βn的計算與βA相同。所以只要α和δ值已知,即可作修正計算,比ZAF法簡便很多。而且,它能更確切地表達w/K(即β)與w的關系,使α因子得到進一步的改善。δ因子修正的實際計算步驟如下:
圖89.14 δ因子修正計算步驟
以不銹鋼為例說明δ因子定量修正計算實例:
測量值K表
w表
δ表(Crkα)
β表(Cr)
δ表(FeKα)
β表(Fe)
δ表(NiKα)
β表(Ni)
岩石礦物分析第四分冊資源與環境調查分析技術
a.將實測的X射線強度計算成相對強度比,即K值,並列成K表。
b.作δ表。對於不銹鋼樣品,應分別作出CrKα、FeKα、NiKα三個δ表(數據可從附錄中查得)。
c.作w表,即作第一次修正計算的假定含量表。此表的具體作法見下面最後一個表。表中A、B、C分別代表不同元素,K是X射線相對強度比,w是假定含量。可用礦物的已知理論成分作為假定含量,可減少迭代次數。
d.作β表。計算各元素的修正系數β值。具體計算方法是將w表和δ表中的相應數值相乘,然後求出各自的總和,即得β值。
e.最後,根據公式w=K×β,求出第一次修正值(即下面實例中計算所得的Cr18.22%,Fe75.08%,Ni7.94%)。
f.判斷是否收斂。判據可根據實際情況設定。通常可取修正值與假定值的相對誤差小於0.5%為判據。小於此數時可不再進行迭代計算。否則,應再次從假定濃度開始,進行下一次修正計算,直至收斂為止。
89.3.2.3 含鹼金屬的礦物和玻璃的分析
Lineweaver發現用電子探針測定鈉、鉀含量時越測越低。這是因為當電子束轟擊試樣時,入射電子形成了一個很小的靜電場,引起帶正電荷的鹼金屬離子向試樣內部遷移,引起鍵的破壞而氧則向表面移動。這種遷移和試樣內部結構有關。非晶體結構的玻璃與有一定晶體結構的礦物相比,鈉、鉀的減少要明顯。例如,分析玄武玻璃,選擇工作電壓15kV,束流0.01μA,束斑為5μm,鈉的減少可達50%,鉀亦減少很多。對於陸源火山碎屑和深海火山碎屑沉積物,工作電壓選用15kV,束流0.0125μA,束斑5~10μm,計數時間為30s,鈉減少仍達50%以上。對一些常見的鈉鉀造岩礦物,如鈉長石、鉀長石、霞石、方鈉石、鈉沸石、針柱石、硬玉等,由於這些礦物具有不同的化學成分和不同的結構,鈉鉀減少的速度也不同。鈉長石、鈉沸石是架狀硅酸鹽,鈉位於架狀結構的空洞中,易於遷移。硬玉是鏈狀硅酸鹽,鈉必須沿鏈運動,因而難於遷移。鈉、鉀的遷移亦與它們與周圍的配陰離子有關。在方鈉石中,Na+是四配位,且與Cl-有關,因而比鈉長石中六配位的Na+較不易遷移。故對於NaCl類試樣,Na+是不會遷移的。從鉀鈉長石的相互比較還可以看到,由於K+比Na+離子半徑大,因而K+的遷移比Na+困難。
下列實驗條件十分重要:
1)加速電壓。加速電壓愈高,試樣的溫度也隨之略有升高,鈉鉀遷移速度越大。
2)電子束流的大小和束斑的大小的影響。在同一束斑條件下,束流愈大,鈉鉀遷移愈快,反之則愈慢。這種影響對Na+要比對K+更為明顯些。在一定束流條件下,隨著電子束斑直徑由小變大,作用於單位體積的入射電子數將作級數遞減,鈉鉀的遷移明顯減少。
3)試樣溫度的影響。實驗表明,試樣本身的溫度對於Na+和K+的遷移有較大的影響。Na+和K+的遷移隨著溫度的升高而加快。當試樣冷卻至-140℃時,即用工作電壓15kV,束流0.05μA,束斑直徑1μm,鈉長石和鉀長石中的Na+和K+幾乎沒有任何遷移的跡象。
因此,作這類試樣分析時應視實驗室的條件採取必要的措施:
1)選擇適當的工作條件,減小加速電壓,減小束流,增加束斑直徑,常選用的工作條件是:加速電壓<15kV,束流<0.02μA,束斑>10μm,測量時間在滿足一定精度要求下應<10s。同時,在測量順序上應首先測定鉀、鈉等元素,以減少遷移的影響。
2)分析時不斷移動試樣,當移動速度達到1μm/s時,鈉長石和鉀長石中Na+和K+的遷移接近零,可得理想的結果。沒有自動馬達帶動的樣品台時,可手動操作。
3)選擇與試樣相近的標樣,使由於鹼金屬離子遷移的影響與試樣相同或接近。當沒有合適的標樣時,也可以使用經驗修正法測定在電子束轟擊下鹼金屬含量的衰減曲線,然後用外推法求出原始含量。
4)用液氮或乾冰將試樣冷卻到-160~-50℃,使鹼金屬遷移減小到零。這種方法需要一定設備和條件且費時,不如經驗修正法簡便。
❹ 鑒定和研究礦物的其他主要方法簡介
鑒定和研究礦物的方法,隨工作目的和要求的不同而異(表16-1)。不同的方法各有其特點,它們對樣品的要求及所能解決的問題也各不相同。下面僅介紹某些重要方法的簡要特點。
1.成分分析方法
此類方法所得結果即為物質的化學成分數據。除經典化學分析系化學方法外,其他常用方法均屬物理方法,大多可同時分析多種元素,但一般不能區分變價元素的價態。
1)經典化學分析
此法准確度高,但靈敏度不很高,分析周期長,很不經濟。樣品要求是重量超過500mg的純度很高的單礦物粉末。
此法只適用於礦物的常量組分的定性和定量分析。主要用於新礦物種或亞種的詳細成分的確定和組成可變的礦物成分變化規律的研究。但不適用於稀土元素的分析。
表16-1 鑒定和研究礦物的主要方法一覽表
2)光譜分析
此法准確度較差(尤其是對含量大於3%的常量元素),但靈敏度高,且快速、經濟。可測元素達70多種。一次測試即能獲得全部主要元素及微量元素的信息。樣品要求:僅需數十毫克甚至數毫克的粉末樣品。
光譜分析通常用於礦物的微量和痕量元素的定性或半定量分析。特別是對於稀有分散元素也能獲得良好的效果。常作為化學分析的先導,以初步了解樣品中元素的種類和數量,供進一步分析或研究時參考。
3)原子吸收光譜分析
原子吸收光譜(AAS)分析靈敏度高,干擾少,快速、精確且較經濟。可測70多種元素,但一次只能分析一種元素,不宜於定性分析。樣品用量少,僅需數毫克粉末樣。
AAS主要用於10-6數量級微量元素和10-9數量級痕量元素的定量測定。適宜於測定沸點低、易原子化的金屬元素及部分半金屬元素。也可進行常量分析。但對稀土、Th、Zr、Hf、Nb、Ta、W、U、B等高溫元素的測定的靈敏度較低,對鹵族元素、P、S、O、N、C、H等尚不能測定或效果不佳。
4)X射線熒光光譜分析
X射線熒光光譜(XRF)分析准確度較高,成本低,速度快,可不破壞樣品。可分析元素的范圍為9F~92U。XRF要求數克至十克(一般4~5g,最少可至數十毫克)較純的粉末樣。液態樣品也可分析。
XRF用於常量元素和微量元素的定性或定量分析。尤其對稀土元素及稀有元素Nb、Ta、Zr、Hf等的定量分析有效。但不能測定變價元素的價態。
5)等離子體發射光譜分析
等離子體發射光譜(ICP)分析比光譜分析更為快速和靈敏,檢測下限可達(0.1×10-9)~(10×10-9)。精度較高,可達±3%,可測定除H、O、N和惰性氣體以外的所有元素。樣品要求:粉末,最少可以數毫克,也可以為液態樣品。
ICP適用於常量、微量和痕量元素的定性或定量分析。特別宜於分析包裹體中含量極低的重金屬離子。
6)激光顯微光譜分析
激光顯微光譜(LMES)分析靈敏度高,快速,有效,成本低,且被破壞樣品的面積小。可測70多種元素。樣品可以是光片、不加蓋玻璃的薄片或大小合適的手標本,樣品表面應拋光,切忌被污染;重砂、粉末或液體樣品要作某些處理。
LMES適於微粒、微量、微區的成分測定。用於研究礦物的化學成分及元素的賦存狀態,特別適用於微細疑難礦物的分析和鑒定。但是,目前對O、N、S等許多非金屬元素尚無法分析,對鹼金屬、難熔金屬(如Mo、Ta等)的檢測靈敏度較低。
7)質譜分析
質譜分析靈敏度和准確度均高,且分析速度快。以純度≥98%、粒徑<0.5mm的單礦物為樣品。樣量視礦物種不同而異,如硫化物需0.1~0.2g,硫酸鹽需2~5g。應避免用化學方法、浮選法等處理分離礦物,以防被污染。
質譜分析系10-6數量級定量分析,常用於准確測定各種岩石、礦物和有機物中元素的同位素組成。從10~30g的隕石標本中提取的稀有氣體即足以為分析所用。
8)中子活化分析
中子活化分析(NAA)靈敏度高,大多數元素的靈敏度達10-6~10-13g。准確度高,精度高(一般在±1%~±5%)。可測的元素達80多種。可同時測定多種元素,分析速度快,且不破壞樣品。樣品要求是純的單礦物粉末,樣量僅需數毫克至數十毫克。
NAA系超痕量、痕量、半微量甚至常量元素的定量分析。可直接測定濃度很低的貴金屬元素,對稀土元素的分析特別有效。廣泛用於同位素組成、同位素地質年齡的測定。此外,也常用於測定包裹體成分。適用於分析隕石和月岩樣品的組成。
9)電子探針分析
電子探針分析(EPMA)靈敏度高,檢測下限可達10-16g。精度一般可達1%~2%,但對微量元素的精度則可差於20%。解析度高(約7nm)。放大倍數為數十倍至數十萬倍。分析速度快,直觀,且不破壞樣品。可測元素的范圍大:波譜分析為4Be~92U,能譜分析為11Na~92U。樣品可以是光片、不加蓋玻璃的薄片或礦物顆粒,且表面必須清潔、平坦而光滑。
EPMA系微米數量級微區的成分分析,宜於常量元素的定量分析。既可定點作定性或定量分析,又能作線掃描和面掃描分析,以研究元素的種類、分布和含量,了解礦物成分分布的均勻程度和元素在礦物中的賦存狀態,定量測定礦物內部各環帶的成分。最適於微小礦物和包裹體成分的定性或定量分析,以及稀有元素、貴金屬元素的賦存狀態的研究。此外,還可輔以形貌觀察。EP-MA只能分析固態物質,對有機物質的分析有困難;不能分析元素的同位素、各種形式的水(如 H2 O和 OH-等)及其他揮發組分,無法區分 Fe2+和 Fe3+。
2.結構分析方法
此類方法一般不破壞樣品,其分析結果是各種譜圖,用於研究物質的晶體結構、分子結構、原子中電子狀態的精細結構。有些還可藉以鑒定樣品的物相,如寶石學上目前常利用紅外吸收光譜、激光拉曼光譜、可見光吸收光譜等技術來鑒別天然寶石和合成寶石。
1)X射線分析
X射線分析是晶體結構研究和物相分析的最常用而有效的方法。其具體方法種類繁多,一般可歸為單晶法和粉晶法兩類。
(1)單晶法:通常稱為X射線結構分析,又有照相法和衍射儀法之分。目前主要採用四圓單晶衍射儀法,其特點是自動化程度高,快速,准確度高。單晶法要求嚴格挑選無包裹體、無雙晶、無連晶和無裂紋的單晶顆粒樣品,其大小一般在0.1~0.5mm。因此在應用上受到一定限制。單晶法主要用於確定晶體的空間群,測定晶胞參數、各原子或離子在單位晶胞內的坐標、鍵長和鍵角等;也可用於物相鑒定,繪制晶體結構圖。
(2)粉晶法:又稱粉末法,也有照相法和衍射儀法之分。粉晶法以結晶質粉末為樣品,可以是含少數幾種物相的混合樣品,粒徑一般在1~10μm。樣品用量少,且不破壞樣品。照相法只需樣品5~10mg,最少可至1mg左右;衍射儀法用樣量一般為200~500mg。粉晶衍射儀法簡便,快速,靈敏度高,分辨能力強,准確度高。根據計數器自動記錄的衍射圖(diffraction diagram),能很快查出面網間距d值和直接得出衍射強度,故目前已廣泛用於礦物或混合物之物相的定性或定量分析。粉晶法主要用於鑒別結晶質物質的物相,精確測定晶胞參數,尤其對鑒定粘土礦物及確定同質多象變體、多型、結構的有序—無序等特別有效。
2)紅外吸收光譜分析
紅外吸收光譜(IR)測譜迅速,數據可靠,特徵性強。傅里葉變換紅外光譜儀具有很高的解析度和靈敏度及很快的掃描速度。樣品不受物理狀態限制,可以是氣態、液態、結晶質、非晶質或有機化合物。乾燥固體樣品一般只需1~2mg,並研磨成2μm左右的樣品。
IR已廣泛應用於物質的分子結構和成分研究。適用於研究不同原子的極性鍵,可精確測定分子的鍵長、鍵角、偶極矩等參數;推斷礦物的結構,鑒定物相;對研究礦物中水的存在形式、絡陰離子團、類質同象混入物的細微變化、有序—無序及相變等十分有效。IR廣泛用於粘土礦物和沸石族礦物的鑒定,也可對混入物中各組分的含量作定量分析。
3)激光拉曼光譜分析
激光拉曼光譜(LRS)系無損分析,其測譜速度快,譜圖簡單,譜帶尖銳,便於解釋。幾乎在任何物理條件(高壓、高溫、低溫)下對任何材料均可測得其拉曼光譜。樣品可以是粉末或單晶(最好是5mm或更大者),不需特別制備,粉末所需量極少,僅0.5μg即可。也可以是液體樣品(10-6ml)。
LRS和IR同為研究物質分子結構的重要手段,兩者互為補充。LRS適用於研究同原子的非極性鍵的振動。
4)可見光吸收光譜分析
可見光吸收光譜分析簡便、可信,不需挑選單礦物,不破壞樣品。以0.03mm標准厚度的薄片為樣品,但研究多色性時則需用單晶體。
此法主要用於研究物質中過渡元素離子的電子構型、配位態、晶體場參數和色心等。也常用於顏色的定量研究,探討透明礦物的呈色機理。可適於研究細小(粒徑在1~5mm)的礦物顆粒。
5)穆斯堡爾譜分析
穆斯堡爾譜分析又稱核磁伽馬共振(NGR)。分析准確、靈敏、快速,解譜較為容易。目前僅可測40多種元素近90種同位素。所研究的元素可以是主成分,也可是含量為萬分之幾的雜質。樣品可以是晶質或者非晶質;既可是單晶,也可是礦物或岩石的粉末。但樣品中必須含有一定濃度的與放射源中γ射線的核相同的元素。含鐵礦物樣品中Fe原子濃度為5mg/cm2為宜,硅酸鹽樣品量一般為100mg左右,因樣品中Fe含量等因素而異。
NGR主要用於研究57Fe和119Sn元素離子的價態、配位態、自旋態、鍵性、磁性狀態、佔位情況及物質結構的有序—無序和相變等,也可用於物相鑒定和快速成分分析。對粘土礦物及隕石、月岩、海底沉積物等晶質多相混合物的研究很有效。
6)電子順磁共振分析
電子順磁共振(EPR)分析也稱電子自旋共振(ESR)分析。靈敏度高。不破壞樣品。只適於研究順磁性離子:室溫下能測定的主要有V4+、Cr3+、Mn2+、Fe3+、Ni2+、Cu2+、Eu2+、Gd3+等;而Ti3+、V3+、Fe2+、Co2+及多數稀土元素離子則只能在低溫下測定。EPR分析對樣品要求不高:固體、液體(0.1~0.01ml)、壓縮氣體或有機化合物均可;可以是單晶,也可以是粉末多晶混合物,但一般以單晶(粒徑在2~9mm)為好。樣品中順磁性離子的濃度不超過1%,以0.1%~0.001%為宜。樣品不需任何處理。
EPR主要用於研究過渡金屬離子(包括稀土元素離子)的微量雜質的價態、鍵性、電子結構、賦存狀態、配位態、佔位情況、類質同象置換及結構的電子—空穴心、結構的有序—無序、相變等。也可作微量元素的定性或定量分析及地質年齡的測定等。在寶石學上,常用於鑒別天然寶石與合成寶石及研究寶石的染色機制。
7)核磁共振分析
核磁共振(NMR)分析目前最常用的高分辨的核磁共振儀廣泛應用於某些分子結構的測定,其解析度高,靈敏度高,測量速度快。但可測元素的種類有限,主要有1H、7Li、9B、11B、13C、19F、23Na、27Al、29Si、31P、40Ca等。樣品可以是較濃的溶液(約0.5ml)、固體(一般20~80mg)或氣體。
NMR主要用於研究礦物中水的存在形式、質子的結構位置及離子的鍵性、配位態和有序—無序分布特徵等,研究相變和晶格缺陷。
3.其他測試方法
1)透射電子顯微鏡分析
透射電子顯微鏡(TEM)分析的功能主要是利用透射電子進行高分辨的圖象觀察,以研究樣品的形貌、晶格缺陷及超顯微結構(如超顯微雙晶和出溶片晶等)等特徵,同時用電子衍射花樣標定晶體的結構參數和晶體取向等。配有能譜儀(或波譜儀)者尚可進行微區常量元素的成分分析。TEM具有很高的解析度(達0.1nm左右)和放大倍數(為100倍~200萬倍),可以直接觀察到原子。樣品可以是光片、不加蓋玻璃的薄片或粉末樣,表面須平坦光滑。
2)掃描電子顯微鏡分析
掃描電子顯微鏡(SEM)分析的主要功能是利用二次電子進行高解析度的表面微形貌觀察。通常也輔以微區常量元素的點、線、面掃描定性和定量分析,查明元素的賦存狀態等。SEM的解析度高(達5nm左右),放大倍數為10倍~30萬倍。樣品可以是光片、不加蓋玻璃的薄片、粉末顆粒或手標本。其制樣簡單,圖象清晰,立體感強,特別適合粗糙表面的研究,如礦物的斷口、晶面的生長紋和階梯等觀察及顯微結構分析等。
3)微分干涉(相襯)顯微鏡分析
微分干涉(相襯)顯微鏡(DIC)能夠觀察礦物表面納米數量級的分子層厚度。反射型顯微鏡用於研究晶體表面微形貌,觀察晶體表面上的各種層生長紋和螺旋生長紋,從而探討晶體的生長機制;透射型顯微鏡用於研究岩石薄片中礦物的結晶狀態及內部顯微構造,能清晰看到微米數量級的微裂紋,從而有助於研究岩石受應力作用的方向和性質。微分干涉(相襯)顯微鏡的縱向解析度高,立體感強。其樣品可以是帶晶面的晶體顆粒或者薄片。
4)熱分析
熱分析系根據礦物在加熱過程中所發生的熱效應或重量變化等特徵來鑒定和研究礦物。廣泛採用的有差熱分析和熱重分析。
(1)差熱分析(DTA):是測定礦物在連續加熱過程中的吸熱(脫水、分解、晶格的破壞和類質同象轉變等)和放熱(氧化、結晶等)效應,以研究礦物的結構和成分變化。用於了解水的存在形式,研究物質的內部結構和結晶度,研究類質同象混入物及其含量,可進行物相的鑒定及其定量分析。尤其對粘土礦物、氫氧化物和其他含水礦物及碳酸鹽類等礦物的研究最為有效。DTA只適用於受熱後有明顯的物理、化學變化的物質,一般僅用於單相物質純樣的研究,樣量僅需100~200mg,粒度在0.1~0.25mm。DTA設備簡單,用樣量少,分析時間較短,但破壞樣品,且干擾因素多,混合樣品不能分離時會相互干擾。因此,必須與X射線分析、電子顯微鏡、化學分析等方法配合使用。
(2)熱重分析(TG):是測定礦物在加熱過程中質量的變化。熱重曲線的形式取決於水在礦物中的存在形式和在晶體結構中的存在位置。TG僅限於鑒定和研究含水礦物,並可確定其含水量。TG以純的礦物粉末為樣品,樣量一般需2~5g,且破壞樣品。TG常與DTA配合使用。目前正向微量(10-5g)分析發展。
❺ 重礦物分析法
重礦物是指碎屑岩中密度大於2.86g/cm3的陸源碎屑礦物。在搬運沉積過程中,性質不穩定的重礦物隨著搬運距離的增大而逐漸減少,而穩定重礦物的相對含量逐漸升高(和鍾鏵等,2001)。重礦物分析的主要內容是統計各種重礦物的含量、繪制重礦物在剖面上和平面上的分布圖、解釋重礦物分布規律及其沉積控制因素等(劉岫峰,1990;曾允孚等,1984)。目前,Z TR指數是一種最常用的方法。Z TR指數由穩定礦物鋯石、電氣石和金紅石組成的透明礦物的百分含量。Z TR 指數越大,說明礦物的成分成熟度越高。研究中,採用了重礦物的Z TR指數分析法與其他重礦物的組合對研究區目的層段進行了重礦物分析。
由於岩石中的重礦物類型組合與其母岩類型有著密切的因果聯系,因此通過對研究區的重礦物類型聚類分析,可以判別出不同油層的母岩類型。母岩類型判斷是在以因子分析為主、聚類分析為輔找出每一段地層的重礦物組合的基礎上,對每段的單礦物數據進行統計分析,求出其正態概率分布,然後對數據進行自然對數變數轉換,求出其自然正態概率分布;綜合其統計分布特徵,定性判別每種礦物來源是否單一,最後結合研究區實際地質資料數據,對每段根據重礦物組合判斷的母岩類型進行約束和校正,以達到最大程度反映實際地質現象的目的。通常情況下,當某兩口井在某一特定的地層內其主要重礦物和次要重礦物在統計分布圖上呈現出相同或相近的組合規律時,說明這兩口井在這個目的層段的地層是來自同一物源;而且據物源越遠,各種重礦物的百分含量就越高,否則,則可能來自於不同的物源。其統計分布圖上各種重礦物的百分含量以及它們之間組合形態的相似程度代表了它們同種物源的符合程度。
從目的層段的重礦物百分含量統計分析可見其中鋯石、石榴子石和鈦鐵礦為主要重礦物,含量在10%以上,部分樣品達到50%以上;次要礦物為電氣石、黃鐵礦、赤鐵礦(有的區域為主要礦物),含量大都在1%~10%之間;偶爾出現的礦物為輝石、錫石等。
如圖4-1所示的紅色井標記的為重礦物分析的井。對有重礦物分析的井進行對比分析如下。
圖4-1 研究區及其外圍井位分布圖
●標注的井位為有重礦物分析的井位,虛線為研究區的外延范圍
1.沙三中亞段研究區物源分析
從重礦物百分含量統計分布圖4-2可以看出沙三中亞段沉積時期萊1井和辛7井的主要重礦物(含量>10%)都是鋯石、石榴子石、鈦磁鐵礦、黃鐵礦。從圖中我們可以看到,除了主要重礦物外,其他次要的重礦物像電氣石、重晶石的含量也極為相似;另外,從整體上看它們所有的重礦物的組合也是很相似的,而且從萊1井到辛7井,這些重礦物的百分含量有所的增加。根據上面述及的用重礦物判別物源方向的理論,可知在萊1井—辛7井這條線上,物源是來自於萊1井,即物源沿著萊1井—辛7井這條線路,由萊1井經研究區向辛7井推進的。換言之,在沙三中亞段沉積時期研究區的物源有一部分是來自東南方向的。
圖4-2 沙三中亞段重礦物百分含量統計分布圖
從重礦物百分含量統計分布圖4-3可以看出沙三中亞段沉積時期永8井、辛4井和辛15井的主要重礦物(含量>10%)都是鋯石、石榴子石、鈦磁鐵礦、黃鐵礦。除了上述的主要重礦物外,從圖中我們可以看到,其他次要的重礦物像電氣石、赤褐鐵礦的含量也很相似;它們之間相互組合的特徵也有一定的相似性。同時,從這3個重礦物百分含量統計分布圖上我們還可以看出主要重礦物的百分含量辛4井、辛15井較永8井的多些,說明物源是從永8井方向向辛4井和辛15井的方向推進,結合圖4-1的井位分布圖,我們可以得出結論:研究區在沙三中亞段沉積時期,物源除了來自東南方向外,東北方向也是研究區物源補給的重要方向。
圖4-3 沙三中亞段重礦物百分含量統計分布圖
2.沙三下亞段研究區物源分析
研究區沙三下亞段物源的方向,我們可以從重礦物百分含量統計分布圖4-4和圖4-5中分析得出。從重礦物百分含量統計分布圖4-4可以看出在沙三下亞段沉積時期萊1井和辛7井的主要重礦物(含量>10%)都是鋯石、石榴子石、鈦磁鐵礦、黃鐵礦,除了上述的主要重礦物外,從圖中我們還可以看到,其他次要的重礦物(在1%至10%之間)像電氣石、重晶石、赤褐鐵礦的含量也很相似。另外,這些主要重礦物的百分含量,在辛7井上也有所增加。可以推知,物源是沿著萊1井—辛7井這條線路,由萊1井向辛7井方向推進的。由於研究區是物源從萊1井向辛7井推進的必經之路,結合圖4-1的井位分布圖分析可知,研究區在沙三下亞段沉積時期,沉積物物源有一部分是來自東南方向的。
圖4-4 沙三下亞段重礦物百分含量統計分布圖
圖4-5 沙三下亞段重礦物百分含量統計分布圖
圖4-6 沙四上亞段重礦物百分含量統計分布圖
由重礦物百分含量統計分布圖4-5可以看出在沙三下亞段沉積時期永8井和辛4井的主要重礦物(含量>10%)都是鋯石、石榴子石、鈦磁鐵礦、黃鐵礦,除了上述的主要重礦物外,從圖中我們還可以看到,其他次要的重礦物(在1%至10%之間)像電氣石、赤褐鐵礦等的含量也很相似。從圖中我們可以明顯地看出這些重礦物之間相互組合的特徵也非常的相似。與永8井相比辛4井在該層段的各種重礦物的百分含量明顯增高。基於上述分析,結合圖4-1的井位分布圖可以推知研究區沉積物的物源是由永8井向辛4井方向推進的,即由北向南推進的。另外,比較永8井和辛7井可以看出這兩口井無論在主要重礦物的組成、百分含量以及與其他重礦物的組合特徵都有一定的相似性,由此可知研究區在沙三下亞段沉積時期,沉積物的物源從北方除了向南推進外還向西南方向推進,換言之,研究區在該時期的物源除了來自東南方向外,還有一部分來自東北方向。
3.沙四上亞段研究區物源分析
由重礦物百分含量統計分布圖4-6可以看出在沙四上亞段沉積時期萊1井和萊41井的主要重礦物(含量>10%)都是鋯石、石榴子石、黃鐵礦、重晶石;除了上述的主要重礦物外,從圖中我們還可以看到,其次要的重礦物(在1%至10%之間)像電氣石、鈦磁鐵礦和赤褐鐵礦等的含量也很相似。從圖中我們可以明顯的看出這兩口井的各種重礦物的之間相互組合的特徵也非常的相似。由此可知,在沙四上亞段沉積時期沉積物的物源是由萊1井向萊41井推進的,即沉積物由南向北推進的。另外,比較辛7井與萊41和萊1井可以看出,與這兩口井相比辛7井無論在主要重礦物的組成、百分含量以及與其他重礦物的組合特徵都有一定的相似性,且主要重礦物的百分含量有所增加。基於上述分析,結合圖4-1的井位分布圖可以推知研究區在沙四上亞段沉積時期,沉積物的物源從南方除了向北推進外還向西北方向推進,換言之,研究區在該時期的物源有一部分來自東南方向。
❻ 礦物成分分析方法
礦物化學成分的分析方法有常規化學分析,電子探針分析,原子吸收光譜、激光光譜、X射線熒光光譜,等離子光譜和極譜分析,中子活化分析及等離子質譜分析等。
在選擇成分分析方法時,應注意檢測下限和精密度。
檢測下限(又稱相對靈敏度)指分析方法在某一確定條件下能夠可靠地檢測出樣品中元素的最低含量。顯然,檢測下限與不同的分析方法或同一分析方法使用不同的分析程序有關。
精密度(又稱再現性或重現性)指某一樣品在相同條件下多次觀測,各數據彼此接近的程度。通常用兩次分析值(C1和C2)的相對誤差來衡量分析數值的精密度。即
相對誤差RE=
常量元素(含量大於或等於0.1%)分析中,根據要求達到分析相對誤差的大小,對分析數據的精密度作如下劃分:
定量分析:RE<±5%近似定量分析:RE<±(5~20)%
半定量分析:RE=(20~50)%
定性分析:RE>±100%
定量分析要求主要是對常量組分測定而言的,微量組分測定要達到小於±5%的相對誤差則比較困難。
1.化學分析法
化學分析方法是以化學反應定律為基礎,對樣品的化學組成進行定性和定量的系統分析。由於化學分析通常是在溶液中進行化學反應的分析方法,故又稱「濕法分析」。它包括重量法、容量法和比色法。前兩者是經典的分析方法,檢測下限較高,只適用於常量組分的測定;比色法由於應用了分離、富集技術及高靈敏顯色劑,可用於部分微量元素的測定。
化學分析法的特點是精度高,但周期長,樣品用量較大,不適宜大量樣品快速分析。
2.電子探針分析法
電子探針X射線顯微分析儀,簡稱電子探針(EMPA)。它是通過聚焦得很細的高能量電子束(1μm左右)轟擊樣品表面,用X射線分光譜儀測量其產生的特徵X射線的波長與強度,或用半導體探測器的能量色散方法,對樣品上被測的微小區域所含的元素進行定性和定量分析。樣品無論是顆粒,還是薄片、光片,都可以進行非破壞性的分析。
電子探針的主體由電子光學系統、光學顯微鏡、X射線分光譜儀和圖像顯示系統4大部分組成。此外,還配有真空系統、自動記錄系統及樣品台等(圖24-3)。其中測定樣品成分的可分為X射線波譜儀和X射線能譜儀,過去電子探針只採用前者,因為它解析度高,精度高,但速度慢。現代新型電子探針一般兩者皆用。能譜分析方法可做多元素的快速定性和定量分析,但精度較前者差。
圖24-3 電子探針結構示意圖
電子探針可測量元素的范圍為4Be—92U。靈敏度按統計觀點估計達十萬分之三,實際上,其相對靈敏度接近萬分之一至萬分之五。一般分析區內某元素的含量達10-14就可感知。測定直徑一般最小為1μm,最大為500μm。它不僅能定點作定性或定量分析,還可以作線掃描和面掃描來研究元素的含量和存在形式。線掃描是電子束沿直線方向掃描,測定幾種元素在該直線方向上相對濃度的變化(稱濃度分布曲線)。面掃描是電子束在樣品表面掃描,即可在熒屏上直接觀察並拍攝到該元素的種類、分布和含量(照片中白色亮點的稠密程度表示元素的濃度)。目前,電子探針已卓有成效地應用於礦物的成分分析、鑒定和研究等各個方面。
值得注意的是,電子探針一個點的分析值只能代表該微區的成分,並不是整個礦物顆粒的成分,更不能用來代表某工作區該礦物的總體成分。因為在礦物中元素的分布是不均一的,不能「以點代面」。對微米級不均勻的礦物,只有採用適當的多點測量,以重現率高的點為依據討論礦物成分的特徵和變化,才能得到較可靠的認識。此外,電子探針對查明混入元素在礦物中存在形式的能力是有限的。它能分析已構成足夠大小的礦物相的機械混入物,而對以類質同象混入物形式存在的元素,電子探針是無能為力的。要解決這個問題,必須用綜合的手段。應當指出,根據在電子探針面掃描圖像上,將分布均勻的混入元素視為類質同象混入物的依據是不夠充分的,因為混入元素的均勻分布,並不都是因為呈類質同象形式所引起,還可以由固溶體分解而高度離散所致。而現代電子探針的解析度(約7.0μm),還不能區分它們,需要用高分辨的透射電鏡(解析度達0.5~1nm,相當於2~3個單位晶胞)、紅外光譜分析、X射線結構分析等方法相互配合,才能解決混入元素在礦物中存在的形式問題。
電子探針分析法對發現和鑒定新礦物種屬起了重要的作用。這是由於電子探針在微區測試方面具有特效,因而對於難以分選的細小礦物進行鑒定和分析提供了有利條件。如對一些細微的鉑族元素礦物、細小硫化物、硒化物、碲化物的鑒定都很有成效。
電子探針也有它的局限性。例如,它不能直接測定水(H2O,OH)的含量;對Fe只能測定總含量,不能分別測出Fe2+和Fe3+含量等。
電子探針分析的樣品必須是導電體。若試樣為不導電物質,則需將樣品置於真空噴塗裝置上塗上一薄層導電物質(碳膜或金膜),但這樣往往會產生難於避免的分析誤差,同時也影響正確尋找預定的分析位置。樣品表面必需盡量平坦和光滑,未經磨光的樣品最多隻能取得定性分析資料,因為樣品表面不平,會導致電子激發樣品產生的X射線被樣品凸起部分所阻擋,所得X射線強度會減低,影響分析的精度。
3.光譜類分析法
光譜類分析法是應用各種光譜儀檢測樣品中元素含量的方法。此類分析方法很多,目前我國以使用發射光譜分析(ES)、原子吸收光譜分析(AA)、X射線熒光光譜分析(XRF)和電感耦合等離子發射光譜(ICP)、原子熒光光譜(AF)、極譜(POL)等較為普遍。它們的特點是靈敏、快速、檢測下限低、樣品用量少。適於檢測樣品中的微量元素,對含量大於3%者精度不夠高。
光譜分析的基本原理概括起來是:利用某種試劑或能量(熱、電、粒子能等)對樣品施加作用使之發生反應,如產生顏色、發光、產生電位或電流或發射粒子等,再用光電池、敏感膜、閃爍計數器等敏感元件接收這些反應訊號,經電路放大、運算,顯示成肉眼可見的訊號。感光板、表頭、數字顯示器、熒光屏或列印機等都是顯示輸出裝置。光譜分析的流程見圖24-4。
圖24-4 光譜分析流程圖
4.X射線光電子能譜分析法
X射線光電子能譜儀由激發源、能量分析器和電子檢測器(探測器)三部分組成。其工作原理是:當具有一定能量hv的入射光子與樣品中的原子相互作用時,單個光子把全部能量交給原子中某殼層上一個受束縛的電子,這個電子因此獲得能量hv。如果hv大於該電子的結合能Eb,該電子就將脫離原來的能級。若還有多餘能量可以使電子克服功函數ϕ,電子將從原子中發射出去,成為自由電子。由入射光子與原子作用產生光電子的過程稱光電效應。只有固體表面產生的光電子能逸出並被探測到。所以光電子能譜所獲得的是固體表面的信息(0.5~5nm)。
光電過程存在如下的能量關系:
hv=Eb+Ek+Er
式中:Er為原子的反沖能;Eb為電子結合能;Ek為發射光電子的動能。Er與X射線源及受激原子的原子序數有關(隨原子序數的增大而減小),一般都很小,從而可以忽略不計。Ek可實際測得,hv為X射線的能量,是已知的。因此從上式可算出電子在原子中各能級的結合能(結合能是指一束縛電子從所在能級轉移到不受原子核吸引並處於最低能態時所需克服的能量)。光電子能譜就是通過對結合能的計算並研究其變化規律來了解被測樣品的元素成分的。
X射線光電子能譜儀可用於測定固、液、氣體樣品除H以外的全部元素,樣品用量少(10-8g),靈敏度高達10-18g,相對精度為1%,特別適於做痕量元素的分析,而且一次實驗可以完成全部或大部分元素的測定,還可選擇不同的X射線源,求得不同電子軌道上的電子結合能,研究化合物的化學鍵和電荷分布等,還可測定同一種元素的不同種價態的含量。
5.電感耦合等離子質譜分析法
電感耦合等離子體質譜(Inctively Coupled Plasma Mass Spectrometry,簡稱ICP-MS)技術是1980年代發展起來的、將等離子體的高溫(8000K)電離特性與四極桿質譜計的靈敏快速掃描優點相結合而形成的一種新型的元素和同位素分析技術。
ICP-MS的工作原理及其分析特性:在 ICP-MS 中,等離子體作為質譜的高溫離子源(7000K),樣品在通道中進行蒸發、解離、原子化、電離等過程。離子通過樣品錐介面和離子傳輸系統進入高真空的四極快速掃描質譜儀,通過高速順序掃描分離測定所有離子,掃描元素質量數范圍從6到260,並通過高速雙通道分離後的離子進行檢測,直接測定的濃度范圍從10-12到10-6。因此,與傳統無機分析技術相比,ICP-MS技術提供了最低的檢出限、最寬的可測濃度范圍,具有干擾最少、分析精密度高、分析速度快、可進行多元素同時測定以及可提供精確的同位素信息等分析特性。
ICP-MS的譜線簡單,檢測模式靈活多樣,主要應用有:①通過譜線的質荷之比進行定性分析;②通過譜線全掃描測定所有元素的大致濃度范圍,即半定量分析,不需要標准溶液,多數元素測定誤差小於20%;③用標准溶液校正而進行定量分析,這是在日常分析工作中應用最為廣泛的功能;④利用ICP-MS測定同位素比值。
在礦物研究方面的應用有:礦物稀土、稀散以及痕量、超痕量元素分析;鉑族元素分析;溴、碘等非金屬元素的分析;同位素比值分析;激光剝蝕固體微區分析等。
6.穆斯堡爾譜
穆斯堡爾譜為一種核γ射線共振吸收譜。產生這種效應的約有40多種元素、70多種同位素。目前得到廣泛應用的是57Fe和119Sn。
圖24-5 某透閃石石棉的穆斯堡爾圖譜
由於地殼中鐵的分布相當廣泛,很多礦物都含鐵,因此鐵的穆斯堡爾譜已成為礦物學研究中一個重要課題。應用這種方法可以測定晶體結構中鐵的氧化態、配位以及在不同位置上的分布等。圖24-5 為某一透閃石石棉的穆斯堡爾譜,圖中顯示了 Fe2+離子在兩種八面體配位位置M1和M2中的分配情況,AA′雙峰表示M1位的Fe2+,CC′雙峰表示M2位的Fe2+。
穆斯堡爾譜技術可鑒定鐵、錫礦物種類;確定礦物中鐵、錫的氧化態(如 Fe3+,Fe2+含量及比值)、電子組態(如低自旋、高自旋)、配位狀態及化學鍵;確定鐵、錫離子的有序度、類質同象置換及含鐵、錫礦物的同質多象變體;進而探討不同溫壓下礦物的相轉變過程。
穆斯堡爾技術目前還不太成熟,通常要求低溫工作條件,可測的元素種類不多,譜線解釋理論也不夠完善,但卻是礦物學研究中一個很有遠景的新技術。
❼ 如何定量分析礦物中的碳酸鋇
郭敦顒回答:
樣品制備後,稱取0 .5000克試樣,用水洗滌,洗去水溶性礦物(計量),烘去結晶水(計量),對水不溶性無水剩餘礦物進行全分析,測定陰離子(氧化物),CO₃,SO₄,SiO₂,Al₂O₃,PO₄,和陽離子(金屬),鈣(Ca),鎂(Mg),鋇(Ba),等等,
礦物中可能含有CaCO₃,MgCO₃,BaCO₃,Ca SO₄,Ba SO₄,CaPO₄,等
再通過列方程計算BaCO₃的含量。詳略。
❽ 礦物學的研究方法
野外研究方法包括礦物的野外地質產狀調查和礦物樣品的採集。室內研究方法很多。手標本的肉眼觀察,包括雙目顯微鏡下觀察和簡易化學試驗,是礦物研究必要的基礎。偏光和反光顯微鏡觀察包括礦物基本光學參數的測定廣泛用於礦物種的鑒定。礦物晶體形態的研究方法包括用反射測角儀進行晶體測量和用干涉顯微鏡、掃描電子顯微鏡對晶體表面微形貌的觀察。檢測礦物化學成分的方法有光譜分析,常規的化學分析,原子吸收光譜、激光光譜、X射線熒光光譜和極譜分析,電子探針分析,中子活化分析等。在物相分析和礦物晶體結構研究中,最常用的方法是粉晶和單晶的X射線分析,用作物相鑒定,測定晶胞參數、空間群和晶體結構。
此外,還有紅外光譜用作結構分析的輔助方法,測定原子基團;以穆斯堡爾譜測定鐵等的價態和配位;用可見光吸收譜作礦物顏色和內部電子構型的定量研究;以核磁共振測定分子結構;以順磁共振測定晶體結構缺陷(如色心);以熱分析法研究礦物的脫水、分解、相變等。透射電子顯微鏡的高分辨性能可用來直接觀察超微結構和晶格缺陷等,在礦物學研究中日益得到重視。為了解決某方面專門問題,還有一些專門的研究方法,如包裹體研究法,同位素研究法等。礦物作為材料,還根據需要作某方面的物理化學性能的試驗(見地質儀器)。
礦物是結晶物質,具有晶體的各種基本屬性。因此,結晶學與化學、物理學一起,都是礦物學的基礎。歷史上,結晶學就曾是礦物學的一個組成部分。礦物本身是天然產出的單質或化合物,同時又是組成岩石和礦石的基本單元,因此礦物學是岩石學、礦床學的基礎,並與地球化學、宇宙化學都密切相關。
❾ 礦物識別方法和工作流程
目前,礦物識別制圖的方法是特徵譜帶識別和基於相似性測度的識別:①利用岩石礦物的特徵譜帶構造識別技術,該方法相對直觀,簡單可行,但是單一的特徵往往造成岩石礦物的錯誤識別,其精度難以達到工程化應用的需求,同時對成像光譜數據的信噪比、光譜重建的精度要求較高;②從岩石礦物光譜的整體特徵出發,與成像光譜視反射率數據進行整體匹配、擬合或構造模型進行分解,這也是目前研究的重點,能有效地避免因岩石礦物光譜漂移或光譜變異而造成的單個光譜特徵的不匹配,並能綜合利用弱的光譜信息,避免局部性特徵(如單一特徵構建的識別方法)造成識別的混淆,識別的精度高。
對於成像光譜上百個波段而言,數據量非常之大,尤其在目前無論是航空成像光譜數據,如AVIRIS、CASI、HyMap等,還是在軌的航天成像光譜數據,如Hyperion航帶都普遍比較窄,一般在3~10km,給大面積應用帶來很多不便,增加了大面積數據處理的難度,並使工作量在目前微機配置的條件下成倍增加。因此,無論是從岩石礦物光譜的局域特徵還是整體特徵開展對礦物的識別,在保證識別精度要求的條件下進行工程化的處理,必須探索新的技術流程。
在對成像光譜數據特徵與識別方法的比較研究中,結合工作實際以及進行工程化處理的初步要求,在確保識別精度的條件下,設計出標准資料庫光譜+光譜-特徵域轉換+礦物識別方法的技術流程。該流程的主要作用:
(1)直接開展蝕變礦物的識別與信息提取:在對試驗區岩石類型、構造、熱液活動以及礦產綜合研究的基礎之上,提煉與礦化關系密切的蝕變礦物,利用標准庫的光譜或野外實測光譜作為參考光譜。
(2)進行光譜域與特徵域的轉換,實現數據減維與數據壓縮,降低工作量,提高工作效率:成像光譜數據波段上百,不同的航帶寬度與記錄長度使單次處理的數據量達1Gbytes,中間過渡文件單航帶可達10Gbytes;在以前的處理中常常將航帶分割成較小的區域進行處理後再進行拼接,利用MNF技術可以將整個光譜域空間轉換到特徵域空間,消除原有光譜向量間各分量之間的相關性,從而去掉信息量較少雜訊較高的向量,使數據處理從成百的光譜域集中到去噪的特徵域中進行,減低數據量,縮短數據處理時間,提高數據處理的效率。
(3)特徵分離,增加不同礦物的可分性,提高礦物識別的精度:在成像光譜數據MNF變換並剔除雜訊波段的特徵域空間中,不同的波段被賦予了不同的物理或數學意義,地物的光譜特徵在特徵域發生分離,地物的細微特徵得到放大,增加了數據的可分性。
4.4.2.1 光譜特徵域轉換
光譜解析度的提高,一方面提高了數據的分類識別的精度以及應用能力,另一方面,增加了數據的容量,也使數據高冗餘高相關。有效的數據壓縮與特徵提取勢在必行。一般地,利用傳統的主成分變換進行相應的變化,衍生出一系列的成像光譜數據壓縮與特徵提取方法,如MNF變換(Kruse,1996;Green et al.,1998),NAPC(Lee et al.,1990)、分塊主成分變換(Jia et al.,1998)以及基於主成分的對應分析(Carr et al.,1999)等。空間自相關特徵提取(Warner et al.,1997)、子空間投影(Harsanyi et al.,1994)和高維數據二階特徵分析(Lee et al.,1993;Haertel et al.,1999)也得到相應的重視。利用非線形的小波、分形特徵(Qiu et al.,1999)也在研究之中。
主成分分析(PCA)是根據圖像的統計特徵確定變換矩陣對多維(多波段)圖像進行正交線性變換,使變換後新的組分圖像互不相關,並且把多個波段中有用信息盡可能地集中到少數幾個組分圖像中(圖4-4-1)。一般地,隨著主成分階次的提高,信噪比逐漸減小。但在波段較多時並不完全符合這一規律。
為改善主成分在高光譜維中的數據處理能力,相應地利用最大雜訊組分變換(MNF)的方法(甘甫平,2001;甘甫平等,2002~2003)。該方法是利用圖像的雜訊組分矩陣(ΣNΣ-1)的特徵向量對圖像進行變換,使按特徵值由大到小排序的變換分量所包含的雜訊成分逐漸減小,而圖像質量順次提高。Σ為圖像的總協方差矩陣,ΣN為圖像雜訊的協方差矩陣。MNF相當於所有波段雜訊方差都相等時的主成分分析,因此可分為兩步實現,第一步先將圖像變換到一個新的坐標系統,使變換後圖像雜訊的協方差矩陣為單位陣;第二步再對變換後的圖像施行主成分變換。此改進的演算法稱為「雜訊調節主成分變換(NAPC)」。
對P波段的高光譜圖像
Zi(x),i=1,2,…,p (4-4-1)
可以假設
Z(x)=S(x)+N(x) (4-4-2)
這里,ZT(x)={Z1(x),…,Zp(x)},S(x)和N(x)分別為Z(x)中不相關的信息分量和雜訊分量。因此,
Cov{Z(x)}=∑=∑S+∑N (4-4-3)
∑S和∑N分別為S(x)和N(x)的協方差矩陣。因此,可以定義第i波段雜訊分量,
Var{Ni(x)}/Var{Zi(x)} (4-4-@4)
選擇線形轉換,MNF變換可以表示為
成像光譜岩礦識別方法技術研究和影響因素分析
在變換中,確保
成像光譜岩礦識別方法技術研究和影響因素分析
同時,為使雜訊與信息分離,S(x)分別與Z(x)和N(x)正交。
圖4-4-1 MNF變換的特徵值曲線
MNF有兩個重要的性質,一是對圖像的任何波段作比例擴展,變換結果不變;二是變換使圖像矢量、信息分量和加性雜訊分量互相垂直。乘性雜訊可通過對數變換轉換為加性雜訊。變換後可針對性地對各分量圖像進行去噪,或舍棄雜訊占優勢的分量。MNF變換的特徵值曲線如圖4-4-1。
4.4.2.2 特徵分離
在MNF變換後的特徵域中不同波段具有不同物理與數學意義。比如變換後的第1波段表示地物的亮度信息,第7 波段或第8 波段表示地形信息。在MNF變換中,通過信號與雜訊分離,使信息更加集中於有限的特徵集中,一些微弱信息則在去噪轉化中被增強。同時在MNF轉換過程中,使光譜特徵向量集匯聚,增強分類信息。
圖4-4-2是一些礦物光譜通過MNF變換前後的曲線剖面圖,從右圖可見信息與雜訊分別有序地集中在一些有限的波段內。通過舍棄雜訊波段或其他處理,相應地降低或消除雜訊的影響。同時信息也比原始數據更易區分。
4.4.2.3 礦物識別
礦物識別主要選用光譜相似性測度的方法。基於整個譜形特徵的相似性概率的大小,能有效地避免因岩石礦物光譜漂移或光譜變異而造成的單個光譜特徵的不匹配,並能綜合利用弱的光譜信息。
圖4-4-2 礦物光譜MNF變換前後特徵比較
基於整個光譜形特徵的識別方法主要有光譜角技術、光譜匹配濾波、光譜擬合與線形分解等。利用大氣校正後的重建光譜數據,可選擇性地利用上述礦物識別技術開展端元礦物的識別。光譜角方法可直接選擇端元礦物進行匹配,最終生成二值圖像,簡單易行,在閾值合理可靠的前提下能夠獲取較高的識別精度。
在成像光譜岩礦地質信息識別與提取方法中,光譜角技術是一種較好的方法之一(王志剛,1993;劉慶生,1999)。光譜角識別方法是在由光譜組成的多維光譜矢量空間,利用一個岩礦矢量的角度測度函數(θ)求解岩礦參考光譜端元矢量(r)與圖像像元光譜矢量(t)的相似性測度,即:
成像光譜岩礦識別方法技術研究和影響因素分析
這里,‖*‖為光譜向量的模。參考端元光譜可來自實驗室、野外測量或已知類別的圖像像元光譜。θ介於0到π/2,其值愈小,二者相似度愈高,識別與提取的信息愈可靠。通過合理的閾值選擇,獲取礦化蝕變信息的二值圖像。
4.4.2.4 閾值的選擇與航帶間信息的銜接
無論是光譜角技術還是光譜匹配以及混合光譜分解,都存在對非礦物信息的分割,因此閾值的選擇是一個必須面臨的重要問題。這不僅關繫到所識別礦物的可靠度,也關繫到礦物分布范圍大小的界定。同時由於是分航帶提取,不同航帶間因大氣校正的誤差和雜訊的影響而使同一地物的光譜特徵存在差異,可能使所提取的礦物空間展布特徵在航帶之間所有診斷和一致性,增加了制圖的困難。因此對於閾值的選擇,需遵循以下原則:在去除明顯假象信息、保留可靠的礦化蝕變信息情況下考慮整體的一致性以及航帶的過渡性。
4.4.2.5 技術流程
結合成像光譜數據預處理,根據實際應用情況,可以總結出成像光譜遙感地質調查工作的技術流程,如圖443所示。
❿ 化學分析礦物定量法的原理是什麼
定量化學分析
quantitative chemical analysis
用化學分析方法准確測定物質中各成分(元素或基團)的含量或物質純度的過程。可以分為:①重量分析。又稱重量法,它既可以是將待測組分經分離並灼燒至具有一定組成的物質稱重測定,也可以是加入適宜試劑使待測組分成為揮發物質逸去 ,從失重求得其含量 。② 容量法 。又稱滴定法,它是以計量標准溶液的體積和濃度來完成測定的方法,即先將待測物質或元素製成溶液,然後向此溶液中逐滴加入與該待測組分有定量反應關系的標准溶液,直至全部待測組分剛好反應完畢(以指示劑指示)為止,從所消耗的標准溶液體積計算該待測組分含量。容量分析包括酸鹼滴定、氧化還原滴定、絡合滴定和沉澱滴定,以及非水滴定、光度滴定、電位滴定等。③比色法和分光光度法。在含待測組分的試液中,以待測組分本身的顏色,或加入某種試劑使形成一定的有色物質,然後與相應的已知濃度的標准系列比較,進行測定 。直接用眼睛觀察,或用光電比色計測量顏色深淺的,稱為比色法。用分光光度計測量時,稱為分光光度法。④其他都是以化學反應為基礎的定量分析方法。
另外還有一種半定量分析法,其准確性比定量分析稍差,但快速簡便,適用於不要求很准確含量的測定,或試樣少而又無理想的定量分析方法可採用的情況。