⑴ 原油中金屬元素分析方法
方法提要
試樣在600℃灰化,用鹽酸溶解灰渣,用原子吸收光譜-標准加入法測定釩、鎳、鋇、銅、鍶等元素等元素。
儀器與裝置
原子吸收光譜儀配有石墨爐、程序升溫控制器和自動進樣器等。
釩、鎳、銅、鍶和鋇的空心陰極燈。
高溫爐控制溫度在(600±25)℃。
試劑與材料
鹽酸。
釩標准儲備溶液ρ(V)=1.00mg/mL稱取0.230g偏釩酸銨(NH4VO3)於燒杯中,用水溶解(必要時加熱),移入100mL容量瓶中,稀釋至刻度,搖勻。
鎳標准儲備溶液ρ(Ni)=0.10mg/mL稱取0.673g硫酸鎳銨[NiSO4·(NH4)2SO4·6H2O]溶於水,移入1000mL容量瓶中,稀釋至刻度,搖勻。
鋇標准貯備溶液ρ(Ba)=0.10mg/mL稱取0.178g氯化鋇(BaCl2·2H2O)溶於水,移入1000mL容量瓶中,稀釋至刻度,搖勻。
銅標准儲備溶液ρ(Cu)=0.10mg/mL稱取0.393g硫酸銅(CuSO4·5H2O)溶於水,移入1000mL容量瓶中,稀釋至刻度,搖勻。
鍶標准儲備溶液ρ(Sr)=0.10mg/mL稱取0.304g氯化鍶(SrCl2·2H2O)溶於水,移入1000mL容量瓶中,稀釋至刻度,搖勻。
氬氣純度不小於99.9%。
分析步驟
稱取 5~10g (精確至 0.001g) 原油於瓷坩堝中,置於 90℃加熱半小時,移入高溫爐中,在 600℃保持 1~2h,使其灰化完全。冷卻後用 1mL (1 + 1) HCl 溶解,移入 25mL容量瓶中,稀釋至刻度,搖勻待測定。同時制備 2 份空白。
採用標准加入法在原子吸收光譜儀上測定釩、鎳、鋇、銅、鍶等元素:
量取 1.0mL 試樣溶液置於 25mL 容量瓶中,加入一定體積的待測元素標准溶液,用水稀釋至刻度,搖勻,用原子吸收光譜儀測定該元素的吸光度。對每個待測元素在該元素的線性范圍內測定 3~5 個加入濃度下的吸光度,並繪制加入濃度-吸光度曲線,將曲線反向延長與濃度軸相交,根據交點處的吸光度值,在相應元素的工作曲線上求取溶液中待測元素濃度。
按下式計算原油中各元素含量:
岩石礦物分析第四分冊資源與環境調查分析技術
式中: w (B) 為被測元素的質量分數,μg/g; ρ 為試液中被測元素的質量濃度,μg/mL;V 為試液體積,mL; D 為稀釋倍數; m 為稱取試樣的質量,g。
⑵ 如何檢測金屬成分含量
判斷金屬元素很簡單的方法就是:煅燒法.
每種金屬元素在煅燒的時候,顏色不一樣.比如鈉是黃色.
如果要鑒定金屬元素的含量:
1.光譜分析儀.優點是一次可以分析多種元素,精度較高.缺點是價格太高,一套幾十萬到上百萬,所以目前只有少數大型企業使用.
2.分光光度計.優點是檢測波長選擇方便,價格不高.缺點是檢測結果不能直接顯示(要換算);沒有曲線建立調用功能,檢測不同元素每次要重新定標;比色皿放入和倒出液體不方便;對操作人員的化學分析基礎知識要求高,因此不能適應企業現場在線檢測分析的需要.
3.比色元素分析儀.優點是使用方便,價格也不高,對操作人員的化學分析基礎要求不高,因此被廣泛用於企業生產檢驗現場分析.但由於其產生的歷史原因,存在以下先天性缺陷.
具體的怎麼操作,希望你多多上網查質料.
⑶ 如何分析金屬成分
通過測定被測物質的特定波長范圍內的吸光度和發光強度,對該物質進行定性和定量。
⑷ 常見檢測金屬元素的主要方法
金屬材料在國內算是非常吃香的,因為它可以靈活運用於各個領域,涉及的范圍也越來越廣,人們的日常生活也慢慢離不開這類材料做出來的生活用品,發展空間巨大。
相信大家都知道什麼是金屬材料,它一般是指工業應用中的合金。我們自然界中大約有70多種純金屬,其中常見的有鐵、銅、鋁、錫、鎳、金、銀、鉛、鋅等等。
合金也是金屬材料的一種,但是它常指的是兩種或兩種以上的金屬或金屬與非金屬結合而成,且具有金屬特性的材料。
金屬材料檢測大家族
金屬材料檢測涉及對黑色金屬、有色金屬、機械設備及零部件等的、還有化學成分分析、、以及精密尺寸測量、無損檢驗、耐腐蝕試驗和環境模擬測試等等。
何為無損檢測?
無損檢測(NDT)是指在不損壞試件的前提下,以物理或化學方法為手段,藉助先進的技術和設備器材,對試件的內部和表面的結構、性質、狀態進行檢查和測試的方法。
射線檢測(RT)、超聲波檢測(UT)、磁粉檢測(MT)和滲透檢測(PT)是開發較早,應用最為廣泛的探測缺陷的方法,稱為大常規無損檢測方法噢。
⑸ 金屬化學成分檢測有哪些方法
化學成分是決定金屬材料性能和質量的主要因素。因此,標准中對絕大多數金屬材料規定了必須保證的化學成分,有的甚至作為主要的質量、品種指標。化學成分可以通過化學的、物理的多種方法來分析鑒定,目前應用最廣的是化學分析法和光譜分析法,此外,設備簡單、鑒定速度快的火花鑒定法,也是對鋼鐵成分鑒定的一種實用的簡易方法。 化學分析法:根據化學反應來確定金屬的組成成分,這種方法統稱為化學分析法。化學分析法分為定性分析和定量分析兩種。通過定性分析,可以鑒定出材料含有哪些元素,但不能確定它們的含量;定量分析,是用來准確測定各種元素的含量。實際生產中主要採用定量分析。定量分析的方法為重量分析法和容量分析法。重量分析法:採用適當的分離手段,使金屬中被測定元素與其它成分分離,然後用稱重法來測元素含量。容量分析法:用標准溶液(已知濃度的溶液)與金屬中被測元素完全反應,然後根據所消耗標准溶液的體積計算出被測定元素的含量。
光譜分析法:各種元素在高溫、高能量的激發下都能產生自己特有的光譜,根據元素被激發後所產生的特徵光譜來確定金屬的化學成分及大致含量的方法,稱光譜分析法。通常藉助於電弧,電火花,激光等外界能源激發試樣,使被測元素發出特徵光譜。經分光後與化學元素光譜表對照,做出分析。 火花鑒別法:主要用於鋼鐵,在砂輪磨削下由於摩擦,高溫作用,各種元素、微粒氧化時產生的火花數量、形狀、分叉、顏色等不同,來鑒別材料化學成分(組成元素)及大致含量的一種方法。
⑹ 金屬元素含量怎麼檢測
金屬元素的含量測試有直讀光譜法、ICP或AAS法,X熒光光譜法、碳硫儀法,氮氧儀法,測氫儀、化學滴定法、分光光度計法、PMI等。常見的重金屬檢測一般用電感耦合等離子體質譜法(ICP-MS)。
⑺ 進行土壤重金屬元素含量分析測試方法都有哪些
2.土壤中重金屬檢測方法 2.1 原子熒光光譜法
原子熒光光譜法是以原子在輻射能量分析的發射光譜分析法。利用激發光源發出的特徵發射光照射一定濃度的待測元素的原子蒸氣,使之產生原子熒光,在一定條件下,熒光強度與被測溶液中待測元素的濃度關系遵循Lambert-Beer定律,通過測定熒光的強度即可求出待測樣品中該元素的含量。
原子熒光光譜法具有原子吸收和原子發射兩種分析方法的優勢[4],並且克服了這2種方法在某些地方的不足。該法的優點是靈敏度高,目前已有20多種元素的檢出限優於原子吸收光譜法和原子發射光譜法;譜線簡單;在低濃度時校準曲線的線性范圍寬達3~5個數量級,特別是用激光做激發光源時更佳,但其存在熒光淬滅效應,散射光干擾等問題[5]。該方法主要用於金屬元素的測定,在環境科學、高純物質、礦物、水質監控、生物製品和醫學分析等方面有廣泛的應用[6]。突出在土壤中的應用如何,以下各方法均是這個問題,相比之下2.5寫的比較好
應用原子熒光光譜法測定土壤的重金屬快速准確,測定周期約為2小時,具有檢出限低、精密度好,干擾少和操作簡單方便,值得推廣應用。 2.2 原子吸收光譜法
原子吸收光譜法又稱原子吸收分光光度分析法,是基於氣態的基態原子外層電子對紫外光和可見光范圍的相對應原子共振輻射線的吸收強度來定量被測元素含量為基礎的分析方法,是一種測量特定氣態原子對光輻射的吸收的方法[7]。其基本原理是從空心陰極燈或光源中發射出一束特定波長的入射光,通過原子化器中待測元素的原子蒸汽時,部分被吸收,透過的部分經分光系統和檢測系統即可測得該特徵譜線被吸收的程度即吸光度,根據吸光度與該元素的原子濃度成線性關系,即可求出待測物的含量[8]。
原子吸收光譜法在農業方面,主要應用與土壤、肥料及植物中的中微量元素分析、水質分析、土壤重金屬環境污染分析、土壤背景值調查及農業環境評價分析等方面。該方法的優點是:選擇性強、靈敏度高、分析范圍廣、抗干擾能力強、精密度高[9]。其不足之處有多元素同時測定有困難,對非金屬及難熔元素的測定尚有困難,對復雜樣品分析干擾也較嚴重,石墨爐原子吸收分析的重現性較差
[10]
。
2.3 電感耦合等離子體發射光譜法
電感耦合等離子體發射光譜是根據被測元素的原子或離子,在光源中被激發而產生特徵輻射,通過判斷這種特徵輻射的存在及其強度的大小,對各元素進行定性和定量分析[11]。
電感耦合等離子體發射光譜法應用於環境水樣、土壤樣品中的微量元素進行分析,在元素分析測試中的應用技術具有簡便、快速、分析速度快;檢出限低,多數可達0.005μg/ml以下[12];測量動態線性范圍寬,一般可達5~6個數量級,可同時進行高含量元素和低含量元素的分析,可達到石墨爐原子吸收光譜儀的部分檢出水平;可多種元素同時分析,可定性、定量分析金屬元素,也可分析部分非金屬元素,提高了分析效率,基體效應小,低背景干擾、高信噪比、精密度高、准確性好等優點[13]。 2.4 激光誘導擊穿光譜法
激光誘導擊穿光譜技術是一種最為常用的激光燒蝕光譜分析技術。其工作原理是:激光經過會聚透鏡會聚,高峰值功率密度使未知樣品表面物質氣化、電離,激發形成高溫、高能等離子體(溫度可達10 000K),等離子體輻射出來的原子光譜和離子光譜被光學系統收集,通過輸入光纖耦合到光譜儀的入射狹縫中,光譜數據通過數據採集控制器傳輸到計算機, 研究該光譜就可以分析計算出被測物質的成分與濃度[14]。原子光譜和離子光譜的波長與特定元素是一一對應的,而且光譜信號強度與對應元素的含量具有一定的定量關系。因此該技術可以實時、快速地現化學元素的定性和定量分析[15]。
激光誘導擊穿光譜可以真正做到現場快速分析,無須進行樣品預處理,分析方便,也不受研究對象的限制[16]。但是,其測量儀器成本較高,激光脈沖能量的起伏性,樣品的不均勻性,樣品的特性會直接影響測量的穩定性,也就是說研究樣品的特性對結果的精確性影響較大[17]。
在激光誘導擊穿光譜土壤重金屬污染物檢測的研究中,在光源設計上採用光學反饋減少脈沖間能量波動,在數據處理上採用一系列激光能量起伏歸一化校正技術,達到克服由於激光器能量起伏造成的影響;通過選擇最佳的采樣延遲時間,以保證所採集到信號譜的信噪比最大;選擇合適的激光脈沖的峰值功率閾值, 達到克服譜線飽和現象和避免自吸收效應的發生以獲得多元素的同時分析;通過研究激光聚焦焦點與樣品表面之間的距離與測得信號譜線的信噪比的關系,達到提
高系統的信噪比。通過以上措施克服上述不利影響,實現了利用LIBS 技術對土壤中Cd, Hg,As,Cr,Cu,Zn,Ni,Pb 等成分的同時測量。
2.5 X射線熒光光譜法
X射線熒光光譜技術是一種利用樣品對X射線的吸收隨樣品中的成分及其多少變化而變化來定性或定量測定樣品中成分的方法[18]。
X射線熒光光譜儀在結構上基本由激發樣品的光源、色散、探測、譜儀控制和數據處理等幾部分組成。該X射線熒光光譜法和電感耦合等離子體質譜法、發射光譜法在元素分析結果之間的差異,結果顯示它們的差異不顯著。從檢出限、准確度、精密度和回收率方面均能滿足實驗要求[19]。
土壤重金屬X射線熒光光譜非標樣測試方法具有前處理簡單,無需標准樣品,對樣品無污染、無破壞性,檢測速度快、穩定性高、再現性好等優點[20]。此方法是對土壤重金屬檢測和污染評價快速有效的方法。完全能夠滿足土壤環境受到污染時急需的快速定性、定量排查土壤中有毒有害重金屬元素的要求。 3.總結
土壤重金屬檢測是一項長期的工作,要求各種檢測手段向更高靈敏度、更高選擇性、更方便快捷的方向發展,不斷推出新的方法來解決遇到的新的分析問題。上述5種重金屬的檢測方法的優缺點如表Ⅰ。隨著各種分析方法的建立和科學技術的不斷進步,分析儀器逐漸由簡單化向復雜化的方向發展,可以預見,各種分析儀器會向多功能、自動化、智能化以及小型化的方向發展,並且檢測精度、靈敏度得到一定的提高,使得土壤環境檢測變得更加簡單准確。