A. 數學建模的方法有哪些
預測模塊:灰色預測、時間序列預測、神經網路預測、曲線擬合(線性回歸);
歸類判別:歐氏距離判別、fisher判別等 ;
圖論:最短路徑求法 ;
最優化:列方程組 用lindo 或 lingo軟體解 ;
其他方法:層次分析法 馬爾可夫鏈 主成分析法 等 。
建模常用演算法,僅供參考:
蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決 問題的演算法,同時間=可以通過模擬可以來檢驗自己模型的正確性,是比賽時必 用的方法) 。
數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數 據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具) 。
線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多 數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通 常使用Lindo、Lingo 軟體實現) 。
圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等算 法,涉及到圖論的問題可以用這些方法解決,需要認真准備) 。
動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是算 法設計中比較常用的方法,很多場合可以用到競賽中) 。
最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些 問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助, 但是演算法的實現比較困難,需慎重使用) 。
網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很 多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種 暴力方案,最好使用一些高級語言作為編程工具) 。
一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計 算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替 積分等思想是非常重要的) 。
數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分 析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編 寫庫函數進行調用) 。
圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文 中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問 題,通常使用Matlab 進行處理)。
B. 建立數學模型有哪兩類主要方法
—般說來建立數學模型的方法大體上可分為兩大類、一類是機理分析方法,一類是測試分析方法.機理分析是根據對現實對象特性的認識、分析其因果關系,找出反映內部機理的規律,建立的模型常有明確的物理或現實意義.
模型准備 首先要了解問題的實際背景,明確建模的目的搜集建模必需的各種信息如現象、數據等,盡量弄清對象的特徵,由此初步確定用哪一類模型,總之是做好建模的准備工作.情況明才能方法對,這一步一定不能忽視,碰到問題要虛心向從事實際工作的同志請教,盡量掌握第一手資料.
模型假設 根據對象的特徵和建模的目的,對問題進行必要的、合理的簡化,用精確的語言做出假設,可以說是建模的關鍵一步.一般地說,一個實際問題不經過簡化假設就很難翻譯成數學問題,即使可能,也很難求解.不同的簡化假設會得到不同的模型.假設作得不合理或過份簡單,會導致模型失敗或部分失敗,於是應該修改和補充假設;假設作得過分詳細,試圖把復雜對象的各方面因素都考慮進去,可能使你很難甚至無法繼續下一步的工作.通常,作假設的依據,一是出於對問題內在規律的認識,二是來自對數據或現象的分析,也可以是二者的綜合.作假設時既要運用與問題相關的物理、化學、生物、經濟等方面的知識,又要充分發揮想像力、洞察力和判斷力,善於辨別問題的主次,果斷地抓住主要因素,舍棄次要因素,盡量將問題線性化、均勻化.經驗在這里也常起重要作用.寫出假設時,語言要精確,就象做習題時寫出已知條件那樣.
模型構成 根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量(常量和變數)之間的等式(或不等式)關系或其他數學結構.這里除需要一些相關學科的專門知識外,還常常需要較廣闊的應用數學方面的知識,以開拓思路.當然不能要求對數學學科門門精通,而是要知道這些學科能解決哪一類問題以及大體上怎樣解決.相似類比法,即根據不同對象的某些相似性,借用已知領域的數學模型,也是構造模型的一種方法.建模時還應遵循的一個原則是,盡量採用簡單的數學工具,因為你建立的模型總是希望能有更多的人了解和使用,而不是只供少數專家欣賞.
模型求解 可以採用解方程、畫圖形、證明定理、邏輯運算、數值計算等各種傳統的和近代的數學方法,特別是計算機技術.
模型分析 對模型解答進行數學上的分析,有時要根據問題的性質分析變數間的依賴關系或穩定狀況,有時是根據所得結果給出數學上的預報,有時則可能要給出數學上的最優決策或控制,不論哪種情況還常常需要進行誤差分析、模型對數據的穩定性或靈敏性分析等.
模型檢驗 把數學上分析的結果翻譯回到實際問題,並用實際的現象、數據與之比較,檢驗模型的合理性和適用性.這一步對於建模的成敗是非常重要的,要以嚴肅認真的態度來對待.當然,有些模型如核戰爭模型就不可能要求接受實際的檢驗了.模型檢驗的結果如果不符合或者部分不符合實際,問題通常出在模型假設上,應該修改、補充假設,重新建模.有些模型要經過幾次反復,不斷完善,直到檢驗結果獲得某種程度上的滿意.
模型應用 應用的方式自然取決於問題的性質和建模的目的,這方面的內容不是本書討論的范圍。
應當指出,並不是所有建模過程都要經過這些步驟,有時各步驟之間的界限也不那麼分明.建模時不應拘泥於形式上的按部就班,本書的建模實例就採取了靈活的表述方式
C. 數學建模有哪些方法
數學建模有哪些方法如下:
1.經驗模型
簡單的通過觀察數據點,使用經驗公式或函數來描述現象和預測趨勢。
2.微積分模型
利用微積分理論中的數、積分、微分方程等工具來進行建模分析。
8.人工神經網路模型
建立一種能夠模仿人類大腦神經元學習能力的模型,通過數據訓練來獲取系統的特性和規律。
9.博弈論模型
基於博弈論的思想,建立參與者之間策略與收益的數學模型,分析各方在博弈過程中的最佳決策。
10.非平衡態統計物理模型
應用非平衡統計物理學的理論和方法來研究各種具有漲落、雜訊、動力學失衡等特性的復雜系統。
11.離散事件模型
以事件為中心,將系虧瞎統的演化分解成各個離散的事件,建立對各個事件所需的資源及其對後續事件發展的影響的計算機模擬模型。
12.混沌理論模型
利用混沌理論的概念和方法研究反復運動的物理系統和非線性動力學系統,在建模上主要採用常微分方程和隨機微分方程。
13.分布式參數系統
利用偏微分方程,研究依賴於位置或空間的系統,如傳熱、流體力學、電力等問題。
14.偏微分方程模型
通過建立偏微分方程模型來描述各種物理現象,如熱傳遞、電磁場、彈性等問題,在工程領域有廣泛的應用。
15.經濟學模型
應用經濟學理論和方法建立經濟系統的數學模型,以預測市場行為、政策影響、擴張潛力等,並進行風險評估與決策分析。
16.社會學模型
基於社會學理論和統計數據,運用數學統計方渣空襪法構建社會現象的模型,分析人類社會行為的規律和趨勢。
17.生物醫學模型
應用生物醫學知識和技術,建立生物醫學系統的數學模型,如計算機模擬人體內臟器官功能等問題。
D. 數學建模中的分析方法有哪些
數學建模分析方法大體分為機理分析和測試分析兩種。
機理分析:根據對客觀事物特性的認識,找出反映內部機理的數量規律,建立的模型常有明確的物理或現實意義。
測試分析:將研究的對象看做一個「黑箱」系統(意思是它的內部機理看不清楚),通過對系統輸入、輸出數據的測量和統計分析,按照一定的准則找出與數據擬合最好的模型。
希望對你有幫助
E. 建模的五種基本方法
量綱分析法
量綱分析是20世紀初提出的在物理領域中建立數學模型的一種方法,它是在經驗和實驗的基礎上,利用物理定律的量綱齊次性,確定各物理量之間的關系。它是一種數學分析方法,通過量綱分析,可以正確地分析各變數之間的關系,簡化實驗和便於成果整理。
在國際單位制中,有七個基本量:質量、長度、時間、電流、溫度、光強度和物質的量,它們的量綱分別為M、L、T、I、H、J和N,稱為基本量綱。
量綱分析法常常用於定性地研究某些關系和性質,利用量綱齊次原則尋求物理量之間的關系,在數學建模過程中常常進行無量綱化,無量綱化是根據量綱分析思想,恰當地選擇特徵尺度將有量綱量化為無量綱量,從而達到減少參數、簡化模型的效果。
差分法
差分法的數學思想是通過taylor級數展開等方法把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的方程組,將微分問題轉化為代數問題,是建立離散動態系統數學模型的有效方法。
構造差分的方法有多種形式,目前主要採用的是泰勒級數展開方法。其基本的差分表達式主要有以下幾種形式:一階向前差分、一階向後差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。
差分法的解題步驟為:建立微分方程;構造差分格式;求解差分方程;精度分析和檢驗。
變分法
變分法是處理函數的函數的數學領域,即泛函問題,和處理數的函數的普通微積分相對。這樣的泛函可以通過未知函數的積分和它的導數來構造,最終尋求的是極值函數。現實中很多現象可以表達為泛函極小問題,即變分問題。變分問題的求解方法通常有兩種:古典變分法和最優控制論。受基礎知識的制約,數學建模競賽大專組的建模方法使用變分法較少。
圖論法
數學建模中的圖論方法是一種獨特的方法,圖論建模是指對一些抽象事物進行抽象、化簡,並用圖來描述事物特徵及內在聯系的過程。圖論是研究由線連成的點集的理論。一個圖中的結點表示對象,兩點之間的連線表示兩對象之間具有某種特定關系(先後關系、勝負關系、傳遞關系和連接關系等)。事實上,任何一個包含了某種二元關系的系統都可以用圖形來模擬。因此,圖論是研究自然科學、工程技術、經濟問題、管理及其他社會問題的一個重要現代數學工具,更是成為了數學建模的一個必備工具。
F. 建模的兩種方法
建模的兩種方法:
方法 1、機理法建模
根據生產過程中實際發生的變化機理,寫出各種 有關的平衡方程
如:物質平衡方程;能量平衡方程;動量平衡方程 以及反映流體流動、傳熱、傳質、化學反應等基本 規律的運動方程,物性參數方程和某些設備的特性 方程等,從中獲得所需的數學模型。
用機理法建模的首要條件是生產過程的機理必須為人們充分掌握,可以比較確切的加以數學描述。模型應該盡量簡單,保證達到合理的精度。用機理法建模時,出現模型中某些參數難以確 定的情況或用機理法建模太煩瑣。 可以用測試的方法來建模。
方法2、測試法建模
根據工業過程的輸入和輸出的實測數據進行數學 處理後得到的模型。特點是把被研究的工業過程視為一個黑匣子,完 全從外特性上測試和描述它的動態性質,不需要深 入掌握其內部機理。為了獲得動態特性,必須使被研究的過程處於 被激勵的狀態,施加一個階躍擾動或脈沖擾動 等。用測試法建模一般比用機理法建模要簡單和省 力,如果兩者都能達到同樣的目的,一般都採用測試法建模。
G. 數學建模方法和步驟
數學建模的主要步驟:
第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。
第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建
模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以
高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應
盡量使問題線性化、均勻化。
第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間
的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老
人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱
大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工
具愈簡單愈有價值。
第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,
特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計
算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。
第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作
出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差
分析,數據穩定性分析。
數學建模採用的主要方法有:
(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模
型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策
等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。
(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型
1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀
態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構
。
3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的
可能變化,人為地組成一個系統。
H. 數學建模分析方法有哪些
初等數學法。主要用於一些靜態、線性、確定性的模型。例如,席位分配問題,學生成績的比較,一些簡單的傳染病靜態模型。
數據分析法。從大量的觀測數據中,利用統計方法建立數學模型,常見的有:回歸分析法,時序分析法。