1. 學習需要分析的方法有哪些
學習需要分析主要是進行三方面的工作:一是深入調查研究,分析教學中需要解決的問題是什麼;二是通過分析該問題產生的原因,以確定解決該問題的必要途徑;三是分析現有的資源條件和制約因素,明確設計教學方案以解決該問題的可行性。
2. 數學分析學習方法
數學分析課程有一個特點是重要、枯燥。重要是顯而易見的,數學分析作為專業基礎課程,對其它後繼課程的學習至關重要;同時它又是枯燥乏味的,這似乎是一對矛盾,要處理這對矛盾,就要解決一個數學分析學習當中的技巧性問題和心理問題。當然不可能人人都能把數學分析學好,由於各人的性向不同,有的人傾向於人文學科,有的人傾向於邏輯思維,有的人傾向於空間思維,有的人則傾向於動手能力….各人的傾向性不一樣,擅長的方 面也各不相同,對數學分析能達到的程度也不一樣。一. 數學分析中關於概念的問題�6�1 概念的形成需要一個過程。與人生哲理等概念不同,數學分析概念具有疊加性,也就是說新概念是在舊概念疊加的基礎上來認識的。概念是數學分析中的一個根本問 題,不是靠背,而是在不斷地運用中逐漸形成的,須經過比較、實踐、摸索、總結、歸納等過程,最後建立一個完整的概念。這個過程甚至可以說是痛苦的,漫長的 一個階 段。�6�1 概念具有長期性。每個概念都有一個失敗— 認識 —再失敗的過程,伴隨著你對這個概念的錯誤理解,在挫折中不斷加深的。�6�1 概念是隨著一個人知識的增加而不斷深入的。學數學分析對一個人建立完整的思維方式很重要,隨著對不同數學分析概念的深入理解,人們處理問題的方式可以越來越趨於嚴謹。�6�1 要建立一個數學分析的概念網。數學分析是一個個概念的點陣,所有的相關的、從屬的概念要在頭腦中形成一個網路。學概念要把不能納入其中的或相關概念認識清楚。總概念中各相關概念是怎樣發展的要有一個清晰的脈絡。�6�1 從不同的層面上來理解一個數學概念。有比較才有認識,對於一個數學分析概念要擅於從正面、側面、上面、下面等各個層面上來認識它。對於相似的、類似的概念或概念的內部關系認識不清,不利於理解概念,這說明數學分析末學深入。二. 運算能力 符號化、模式化是數學分析的一大特點,對這點我們應該有深刻的認識。1. 模式化。數學分析的一些定理、原理、公理都有一定的模式,「因為……所以…」即最簡單的一種模式,對各種數學模式的理解認識也是對人的邏輯思維能力的訓練。符號化。數學分析的符號與表達性符號不同,文學藝術中的表達性符號是需要我們仔細體會其中的含義的;而數學分析 中的符號是一種替代性符號,它無需我們想其含義,作用就在於推導,它只是一個替身,幫助我們進行數學思維,所以我們不可以在它的含義上耗費太多的精力。數 學就是符號游戲,我們對符號必須精通,才能進行迅速變形。三. 做題技巧�6�1 從做題方式來分,平時作業可分為硬作業和軟作業兩種:硬作業是指每天需要認認真真做的作業,這類作業要按正規的步驟一絲不苟地做,旨在訓練自己的筆頭功夫 和書寫能力;軟作業是指每日需抽出一定的時間來瀏覽若干習題,這類題主要是用來鍛煉自己的思維能力的,具體做法是無需動筆,眼睛看著習題,大腦中迅速掠過 這道題的思路、做法,整個過程有點類似空對空。所以在平日做題中兩種方式要搭配使用,認真做的題和瀏覽的題要相濟並用。�6�1 做題要有節奏,難易結合。做題要講質量,不能把精力都放在做偏、難、怪的題型上,若平時將重心放在難題上,基礎知識難免會偏失,所以平時適度地做一些中等難度的題即可,關鍵是要學好基礎知識,循序漸進。�6�1 做題要留下體會,留下痕跡,學習分為三個過程:模仿、品味、遷移。模仿是初始階段經常作用的一種方式,以老師或教科書為參照,按部就班地做。經過一次次地 模仿,我們自己對這些記憶中的題型在大腦中進一步地加工、體會,形成自己對這類題的成型的理解。經過前兩個階段的積累,最後達到將原知識體系與現有知識的 相互融合,就實現了對新、舊知識的最新體會。四. 數學分析學習方法 常見的數學方法有如下幾種:�6�1 化歸法。將復雜化問題化為若干個簡單的問題的一種思想。�6�1 注意經常對知識進行歸納、整理、總結,促進學過的知識更加系統化、條理化,解題時就能比較順利地將內在關系理順。�6�1 做題時應樹立一種次序和關聯的思想。數學的題干中各要素一般都是按一定的次序和關系排放的,做題前要審清題意,分先後,分主次,各個擊破。