㈠ 數據分析方法
數據分析常用的方法有列表法和作圖法。
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支持過程。在實用中,數據分析可幫助人們作出判斷,以便採取適當行動。
數據分析的意義:
在產品的整個壽命周期,包括從市場調研到售後服務和最終處置的各個過程都需要適當運用數據分析過程,以提升有效性。例如,一個企業的領導人要通過市場調查,分析所得數據以判定市場動向,從而制定合適的生產及銷售計劃。因此數據分析有極廣泛的應用范圍。
數據分析一定程度上對網路營銷也有很大的好處,通過數據分析,知道目標客戶群上什麼網站、做什麼事、在什麼時間地點能夠找到他。實際上,論覆蓋面,網路營銷還遠遠趕不上傳統媒體。
2009年底中國的互聯網普及率為28.9%,而同期中國電視的普及率卻已經超過80%。但是,仍舊有很多有遠見的企業選擇網路營銷。其中的一個重要原因是,網路營銷的全過程都可以被追蹤到,通過數據分析可以隨時調整投放方式。
㈡ 生產車間統計如何做好數據分析工作
首先,你先得整明白,你能收集到哪些數據,這包括,怎麼收取,怎麼存放,用哪些名詞表示。
再次,就是學習一些常見的數據分析計算,一些數學知識和畫圖展示技術。
㈢ 數據分析的幾種常用方法21-10-27
幾種常見的數據分析分析方法:
1.周期性分析(基礎分析)
What :主要是從日常雜亂的數據中,發現周期性出現的現象,而從避免或改善問題的發生。常見的兩種周期:自然周期和生命周期。
需要注意的點:雖然周期性分析主要針對時間序列,但不全是,例如公眾號的文章閱讀走勢不僅和日期(工作日或周末)相關,也和文章類型相關。
例如:銷售中3,6,9,12月,由於績效考核出現的峰值
重點節假日對和交付的影響
產品銷售的季節性影響(例如北方下半年的採暖產品,入夏空調的銷售旺季等)
How: 自然後期的時間維度,根據分析的需求,可從年(同環比,業績達成、和行業趨勢對比),月(淡旺季、銷售進度、生產預測),周(一般較少),日(工作日,非工作日的差異分析),時(時間分布,工作時段,上下班高峰,晚上,主要和大眾消費行為分析相關)進行展開
生命周期一種常見的分析就「商品生命周期」,商品銷量隨上市時間的變化,通過時間軸+指標走勢組合出來的。這種分析對快消品或者產品迭代速度很快的商品(典型如手機)是比較重要的,可以用於監控產品的市場表現,對照市場活動可以量化活動效果以及產品線的經營情況,如持續跟進,則可針對性的提出產品上市的建議。
2.矩陣分析(重要分析方法)
矩陣分析是數據分析中非常重要的分析方法。主要解決分析領域的一個非常致命的核心問題:「到底指標是多少,才算好」。
平均數是一個非常常用的數據維度,但是單一維度,並不能充分評價好壞。例如考核銷售,如果只考核業務銷售業績,那麼業務人員一定會傾向賣利潤低的引流產品。那種利潤高,價格高,不容易賣的利潤型產品就沒人賣了,最後銷售越多,公司的利潤反而下降了。這個時候通過兩個維度:銷售規模和銷售利潤,構建交叉矩陣,就能將業務業績進行更有效的區分。
舉個簡單的例子,一個銷售團隊,10名銷售一個月內開發的客戶數量,產生的總業績用矩陣分析法進行分析(具體數據略):
第一步:先對客戶數量、業績求平均值
第二步:利用平均值,對每個銷售人員的客戶數量、業績進行分類
第三步:區分出多客戶+高業績,少客戶+高業績,多客戶+低業績,少客戶+低業績四類
矩陣分析把關鍵業務目標拆分為兩個維度,每個維度進行高低分類,進而可以對目標進行更加立體的描述。維度高低分類多採用 平均值作為參考 值。
注意:有兩個場景,是不適合用矩陣分析法:
一:有極大/極小值影響了平均值的時候,一般出現極大/極小值的時候,可以用: 分層分析法 。
二:兩個指標高度相關的時候,例如用戶消費金額與消費頻次,兩個指標天生高度相關,此時數據分布會集中在某一個或兩個區域,矩陣分析法的業務解讀能力接近0,可採用 相關分析法
3.結構分析
What: 結構分析是將分析的目標,向下分解,主要用於發現問題。
例如銷售分析,可以按照區域—省—市 一級級的分解,分解之後可以更好的看出影響銷售業績的影響因素在哪個位置。
結構分析可以有多個維度,取決於我們需要分析的方向。例如還是銷售分析,可以從產品構成進行拆解,也可用從業務形態拆解
How:如何進行結構分析?
第一步:定出要分析的關鍵指標(一般是業績、用戶量、DAU、利潤等等)
第二步:了解關鍵指標的構成方式(比如業績,由哪些用戶、哪些商品、哪些渠道組成)
第三步:跟蹤關鍵指標的走勢,了解指標結構變化情況
第四步:在關鍵指標出現明顯上升/下降的時候,找到變化最大的結構分類,分析問題
注意:結構分析的不足
結構分析法是一種:知其然,不知其所以然的方法。只適用於發現問題,不能解答問題
4.分層分析
What: 分層分析,是為了應對 平均值失效 的場景。典型的平均值失效例如平均工資,很多人都被「代表」。這個時候需要把收入群體分成幾類,例如土豪,普通百姓,窮光蛋等,後面進行分析時就比較清楚了。業內也有一些不同的叫法,比如應用於商品的,叫ABC分類,應用於用戶的,叫用戶分層,應用於業務的,叫二八法則。本質都是一回事。
How:如何進行分層分析
1.明確分層對象和分層指標
例如:想區分用戶消費力,分層對象就是:用戶,分層指標就是:消費金額
想區分商品銷售額,分層對象就是:商品,分層指標就是:銷售金額
想區分部銷售額,分層對象就是:分部,分層指標就是:銷售收入
2.查看數據,確認是否需要分層。分層是應對平均值失效的情況的,存在極值影響的情況,則適合分層。
3.設定分層的層級。最好的解決辦法是老闆拍板,其次可以用「二八原則」,以上述銷售業績分層為例,可以先從高到低排序,然後把累積業績佔80%的人選出來,作為「第1層級(優等)」,其他的歸為「第2層級(次等)」。有時如果顆粒度不夠,也可以用「二四六八十」法則」。
如何應用分層
分層的最大作用是幫我們看清楚:到底誰是主力 ,誰是吊車尾。從而指導業務,從人海戰術向精兵簡政思考。
根據分層的結果找出差距,進而提出(假設)差異背後可能的原因,通過其它方式進行
應用 :客戶分析,目前系統中客戶超5000個,為了更好的了解客戶結構,可以通過分層分析的方法對這5000個客戶進行分層,分層的方式通過年銷售規模,可以按照累計規模排序,一般採用4-6個層級,每個層級可以給一個標簽。例如王者客戶,腰部客戶,mini客戶等。分層後,便可以針對性的進行分析,例如客戶層級的銷售佔比,變動,各層級客戶的銷售構成,結合其它方法就可以有較全面的分析
5.漏斗分析(待補充)
6.指標拆解(待補充)
7.相關性分析(待補充)
What :兩個(或多個)因素之間的關系。例如員工人數與銷售額,市場推廣與銷售業績,天氣和銷售表現等
很多因素我們直觀的感覺到之間有聯系,相互影響,但具體的關系是什麼,如何產品影響的,可以通相關性分析來量化。
例如,客戶開拓中拜訪客戶的次數和客戶成交是否有關系?
拜訪次數多,表明客戶也感興趣,所以成功幾率大
拜訪這么多,客戶還不成交,成功幾率不大
客戶成交和拜訪關系不太大,主要看你是否能打動他
How :兩種聯系:直接關系,間接關系
直接關系 :整體指標與部分指標的關系——結構分析,例如銷售業績與各中心的業績
主指標與子指標的關系——拆解分析,例如總銷售規模和客戶數量與客戶銷售規模
前後步驟間的關系——漏斗分析:例如銷售目標和項目覆蓋率,儲備率,簽約等因素間的關系
聯系中,指標之間出現一致性的變化,基本是正常,如果出現相反的變動,則需要關注,這可能是問題所在
間接關系 :要素之間沒有直接的聯系,但存在邏輯上的連接。例如推廣多了,知名度上市,進而銷售額上升。
由於關系非顯性,需要通過處理進行評價,常用的就是散點圖和excel中的相關系數法
在明確相關性後,就可以通過改變其中一個變數來影響和控制另一個變數的發展。
注意:相關性分析也存在很大的局限。主要體現在相關性並不等同因果性。例如十年前你在院子里種了一顆樹,你發現樹每天的高度和中國近十年GDP的增速高度相關,然後這兩者間並沒有什麼實質性的聯系。此次相關性分析過程中一定注意要找到關聯的邏輯自洽。
8.標簽分析(待補充)
9.
㈣ 生產管理中的數據分析
生產管理中的數據分析
生產系統在大多數情況下是一個內向型的組織,相對比較封閉,無論是連續型生產模式還是離散型生產模式,都可以用類似的分析方法和思路。
生產製造過程大概分為四大類階段,即傳統生產、精益生產、數據化生產、智能生產。不同的階段,數據分析能夠發揮的作用也不同。
在傳統生產階段下,數據化程度不足,缺少信息系統的支持,多數的數據都是以記錄表、紙張、條子等形式存在,都被鎖在櫃子里,數據分析能夠起到的作用是有限的,處理數據的成本是非常高的。
在精益生產階段中引入了大量數據分析的內容,包括全面質量管理,以及精益生產管理中的各種數據指標和分析方法都開始用數據來說話,包括典型的看板管理就是數字化的管理模式。用數據可以看到公司的行為、用可視化的方式可以讓全員能夠看到自己的進度、看到產品的質量。
第三個階段是數據化生產,通過數據我們可以知道整個生產過程在發生什麼,該怎麼生產才能更好地滿足客戶的需求,如何更好地滿足客戶的個性化需求。數據化讓所有的過程更加清晰和透明,讓更多的信息產生智慧。
第四個階段是智能生產,通過全供應鏈流程的通信管理,讓工廠為消費者的個性化、高效地生產。更多的無人參與的工廠會涌現,更多的靈活生產的生產線會產生,智能化生產是未來一二十年的基本生產模式。
目前中國的企業大多數都仍然處在傳統生產模式中,中國企業要想跟進國際企業的進程,必須要在數據化管理上彎道超車,必須要加快數字化建設,讓數據成為企業決策的依據,讓數據本身能夠產生管理的智慧和生產的智慧。
智能生產的基礎是數據化,數據化的基礎是信息化,信息化的基礎是管理的正規化。目前有很多工廠還在用管理手工作坊的方式管理著生產,特別是在三四線城市的工廠中,工人沒有經過嚴格的工廠化的培訓,還在用「差不多就行」的思想在工廠里工作。雖然中國是世界製造大國,但我們的管理能力、生產製造能力、研發能力、生產線設計能力、機器設備的配套能力都遠遠落後其他國家。雖然我們有很多先進的工廠,但工廠里除了員工是中國的,其他都是進口的,如設備是進口的、原材料是進口。我們必須要突破,必須在管理上要改善。正規化管理、信息化建設、數據化管理是我們奔向智能化管理的必經之路,無法跳躍,但是我們可以用最快的速度補齊短板。國外用幾十年、上百年走過的工業化之路,我們可以用短短的三四十年來完成,而數據化管理是我們的跳板,必須要把握。
在生產管理領域的數據分析中,有四個維度是需要數據化的,而且這四個維度之間是相互作用的。這四個維度分別是產量(Quantity)、品質(Quality)、成本(Cost)和交期(Time),為了方便記憶這里縮寫為 TCQQ。
1.產量
我們需要從產能的角度思考生產產量,例如產能是多少;我們實際產出了多少;我們的產能利用率是多少;我們生產產量的波動性是多少;產能或者訂單是否穩定,如果不穩定,那麼我們如何配置資源,減少產能閑置;如何在高峰期滿足生產,如何在低峰期減少閑置;如何規劃未來的產能;如何通過靈活生產來平衡產能;是否需要淡季儲備,這一系列的問題都與產量相關。
2.品質
全面的品質管理包括品質達成情況是怎麼樣的;次品率是多少;返修率是多少;投訴率是多少;退貨率是多少;消費者對品質的評價是什麼;品質是否是公司產品的競爭力;對比競爭對手,我們的品質是否領先;我們的產品是否創新了,是否引領市場了;我們的產品生命周期是否足夠長;我們除了生產管理強調了品質管理;其他部門是否也達到了品質管理的要求和標准,等等。
3.成本
成本方面的分析包括產品的成本結構是什麼樣的;訂單的成本結構是否能夠精準地算出;別人生產的成本率是多少;我們如何降低成本;哪些地方有降低成本的空間 ;哪些方面存在浪費 ;哪些浪費是可以消除的。
《精益生產》中列舉了七大類浪費,我們在為生產製造型企業提供數據管理咨詢服務的時候,把這種精益管理思想數據化,並推延到整個公司的管理中,總結出「十大企業管理資源浪費」,並用這些浪費的首字母組成了一個單詞:DOWNTIMERS,下面分別介紹一下。
①產品不良(Defect): 產品生產出來不合格,無法銷售,並且無法再次加工,那麼這就浪費了材料,消耗了能源,耽擱了生產線生產,浪費了加工過程各種投入,甚至影響公司的銷售,延長訂單交期,導致客戶不滿。
②過度加工(Over Proction):一件商品從消費者滿意角度看,加工 N 道工序最為合適,如果超過這些工序就是過度加工。過度加工會將不必要的生產投入注入產品中,並未得到消費者更高的評價,或者消費者根本就感知不到,因此造成公司投入上的浪費 ;過度包裝也是一種過度加工的類型。
③等待(Wait):等待是指人、財、物在時間上的浪費。無論是物料的等待還是人員的等待都是企業管理過程中的資源浪費。物料等待時間過長導致的是訂單交期延長;在產庫存量增加,也會帶來資金浪費;等待中的材料需要存放,也會導致倉儲費用增加;人員的等待也是浪費,例如下一道工序等待上一道工序完成。所有的等待都可以看作是閑置,或者不產生價值的時間,例如公司約定 8 點開會,早到的人 7:50 到場,有些人 8:15 才到場,然後會議 8:20 才開始,早到的人提前了 30 分鍾,這個半小時就是閑置時間,是浪費,所以說高效的公司一定是非常守時的,守時是對所有與會者的尊重。幾乎所有的公司中都存在或多或少的閑置浪費,這種浪費如果不消除,那麼公司就很難控製成本。
④無價值流程(Non-Value-AddedProcess):無價值流程是指不產生價值的流程、工藝、過程。業務流程、生產工藝、管理過程等在好多的情況下都有不產出價值的內容。例如火車站的檢票程序,你會發現進站的時候乘務員會查一遍火車票和身份證,上車前乘務員還要查一遍火車票和身份證,這兩次檢查其中有一次就是無價值的。而北京南站取消了第一道檢票流程,只在上車前才查身份證和火車票,從而讓乘客的進站時間大大縮短,這樣的流程安排讓更多人把去火車站的提前時間縮短,滯留在北京南站的人數也會大幅度減少。
⑤運輸或中轉位移(Transportation) :工廠中的物料移動、人員移動都不產生任何價值,移動距離越大,浪費越大,所以先進的工廠都通過立體的設計減少物料的移動和人員的移動。當物料的等待時間和人員的等待時間價值不同時,流程設計也會不同。當人員成本高時,物料移動;當物料成本高時,人員移動。除生產高凈值產品的生產線外,絕大多數的工廠都是物料圍繞著人員轉的,所以有了流水線的設計。在公司管理上,人員的移動距離也是一種浪費,如果人員能夠在一個辦公室中,那麼絕對不要開設更多的辦公地點,這樣一方面會讓溝通被弱化,另外也帶來移動的浪費。員工在上下班路上的時間也是人工成本上的浪費,雖然勞動合同上並未把員工在上下班路上的時間計入工作時間,但是這個時間也是員工付出的成本之一,也會被員工計入對薪資的期望中。如果可能,要盡可能地將員工上下班路上的時間縮到最小,因為這個時間並不產生任何價值,還會消耗大量的社會資源。一個城市的規劃也是如此,在 20 世紀 90 年代,中國的城市發展希望走「功能區」模式,即將商務區、工廠區、行政區、高科技區、居住區、文化娛樂區等分開建設,這種功能區的建設讓很多人都在同一個方向移動,不能很好地分散人流,導致交通壓力大,出行效降低,同時無效的上下班移動距離,增加了大量的社會成本,也涌現了「鬼城」、「睡城」等特殊現象。繁華商業區因為只有上班的地方而沒有居住的地方,所以在晚上成了「鬼城」;而居住區白天無人居住,晚上都回來睡覺,所以成了「睡城」。城市功能不分散導致很多人的移動距離增加,這種模式應該逐漸在城市發展中被淘汰。
⑥智力冗餘(IntellectRendancy):一個高級技工從事普通的體力勞動,這就是一種智力的冗餘。如果按照高級技工的工資給其付酬,也是浪費,因為這在無形之中給公司帶來了費用的增加;除非你是出於競爭戰略考慮:雖然我不能給這個高級人才提供適合他的工作,但我必須把他圈在我的公司中,因為他一旦去了競爭對手的公司,那麼我的公司面臨的競爭壓力就會非常大了。很多公司中都存在或多或少的智力冗餘現象,因為一家公司在識人、用人上存在能力不足和信息不對稱,就會出現優秀人才得不到重用的現象。當然,有些公司需要從流程上避免智力冗餘現象,例如,服裝廠的一個裁縫工人是高級技工,工資比普通工人要高很多,但如果在工藝流程上,他還需要縫紉工去領料、送料、修剪毛邊、剪線頭,那麼就是智力冗餘的不良工藝設計。
⑦動作冗餘(Motion):我們在從事勞動的時候都會由一些基本的動作來完成,如果動作不合理,就會造成動作上的浪費。據說計算機鍵盤是根據字元在英文中出現的最大頻率來設計的,以便讓手指頭在鍵盤上的移動距離最小,從而大幅度節省手指在打字移動的距離和時間,提高效率。這個設計是按照英文習慣設計的,但不見得適合中文、法文、義大利文等其他語言,這里就是效率的問題。歷史上英文字母出現的頻率和現代社會中英文字母出現的頻率已經大大不同,而鍵盤按鍵布局的變化會導致打字速度大幅度降低,從而會提高學習成本,所以最初的設計非常重要。
工廠中的動作設計也需要科學地評估、合理設計,要降低學習成本。
⑧超額庫存(Excess Stock/Inventory): 「庫存是萬惡之源」,每個公司都希望大幅度削減庫存,包括工廠中的庫存和流通環節的庫存。物品的存放就是浪費,社會物資快速流動起來才能創造更多的價值。超額的庫存是由於生產計劃不準確、銷售預測不準確導致的,很多企業因為庫存問題被拖垮。產品生產出來賣不出去、采購的物料用不完、生產交期過長,這些都將高流動性的企業經營現金流固化到庫存中,甚至成了長期的庫存。降低庫存甚至零庫存需要通過數據化管理,需要通過商業模式創新。
⑨返工或者重復工作(Rework):返工、返修、重復都是極大的浪費,產品質量不合格,可能需要返工,例如一個零件尺寸要求為 11.55 米,你卻加工成了 11.56米,超過了標准,就需要再銑掉 0.01 米,這個過程就是返工;而如果你將零件加工成了11.54米就成了廢品(Defect),而11.56米的零件是不合格品。一篇文章反復修改,一個方案反復討論,一個模型反復設計,都是重復工作,最好將這種工作減少到最小,雖然有些工作是不可能一步到位的。
⑩停機、停下(Stop) :我們在開車時,如果要停車,需要慢慢踩剎車。再次啟動時也需要慢慢提速。如果停車的次數過多,則會大幅度延長我們到達目的地的時間。工廠中的加工也是如此,有些時候我們需要停機檢修,需要對鍋爐進行清洗等,這些都是浪費;公司管理中也存在這種浪費,當項目停下來又再啟動時需要花費時間,只有一鼓作氣將一件事情做完才最高效。
4.交期
交期是指從客戶下達訂單到客戶獲得產品和服務的周期。任何一個人都希望能立馬獲得並能夠使用產品。工廠的客戶也一樣,客戶希望下達訂單之後能夠馬上收到產品,並能夠快速投入使用,讓整個的供應周期降低到最短。這是一個理想的狀態,在多數非庫存生產的企業中都存在交期的問題。而交期一方面代表著客戶的滿意度,代表著企業適應市場變化的能力。更為重要的是,交期也代表著企業的周轉效率。
筆者曾經服務過一個年產值 20 億元人民幣的外加工工廠。當一個訂單從國外發送過來之後,企業就組織生產並與原材料采購同步,整個周期是 18 天,而實際有效的生產的周期是 7 天。
㈤ 如何做數據分析
數據分析有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。
01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。
02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。
03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。
04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。
05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。
06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。
07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。
㈥ 數據分析的方法有哪些
② 數據分析為了挖掘更多的問題,並找到原因;
③ 不能為了做數據分析而坐數據分析。
2、步驟:① 調查研究:收集、分析、挖掘數據
② 圖表分析:分析、挖掘的結果做成圖表
3、常用方法: 利用數據挖掘進行數據分析常用的方法主要有分類、回歸分析、聚類、關聯規則、特徵、變化和偏差分析、Web頁挖掘等,它們分別從不同的角度對數據進行挖掘。 ①分類。分類是找出資料庫中一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到某個給定的類別。它可以應用到客戶的分類、客戶的屬性和特徵分析、客戶滿意度分析、客戶的購買趨勢預測等,如一個汽車零售商將客戶按照對汽車的喜好劃分成不同的類,這樣營銷人員就可以將新型汽車的廣告手冊直接郵寄到有這種喜好的客戶手中,從而大大增加了商業機會。 ②回歸分析。回歸分析方法反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。它可以應用到市場營銷的各個方面,如客戶尋求、保持和預防客戶流失活動、產品生命周期分析、銷售趨勢預測及有針對性的促銷活動等。 ③聚類。聚類分析是把一組數據按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的數據間的相似性盡可能大,不同類別中的數據間的相似性盡可能小。它可以應用到客戶群體的分類、客戶背景分析、客戶購買趨勢預測、市場的細分等。 ④關聯規則。關聯規則是描述資料庫中數據項之間所存在的關系的規則,即根據一個事務中某些項的出現可導出另一些項在同一事務中也出現,即隱藏在數據間的關聯或相互關系。在客戶關系管理中,通過對企業的客戶資料庫里的大量數據進行挖掘,可以從大量的記錄中發現有趣的關聯關系,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據。 ⑤特徵。特徵分析是從資料庫中的一組數據中提取出關於這些數據的特徵式,這些特徵式表達了該數據集的總體特徵。如營銷人員通過對客戶流失因素的特徵提取,可以得到導致客戶流失的一系列原因和主要特徵,利用這些特徵可以有效地預防客戶的流失。 ⑥變化和偏差分析。偏差包括很大一類潛在有趣的知識,如分類中的反常實例,模式的例外,觀察結果對期望的偏差等,其目的是尋找觀察結果與參照量之間有意義的差別。在企業危機管理及其預警中,管理者更感興趣的是那些意外規則。意外規則的挖掘可以應用到各種異常信息的發現、分析、識別、評價和預警等方面。 ⑦Web頁挖掘。
㈦ 生產管理系統中產品數據統計分析方法有哪些
很多企業在生產運營中,往往只重視經濟效益的提升,改善經營方式,健全企業管理體制與運行機制,卻忽視了統計工作的重要性。其實,若無科學的統計數據支撐,那麼企業在制訂相關方案與政策時就猶如閉門造車,毫無頭緒,也難以取得實效。為了解決以上問題,ERP生產管理系統,在滿足生產過程全生命周期管理的同時,還可以支持各數據按照柱狀圖、折線圖、餅圖進行各維度的直觀分析,為管理層決策提供數據支持。
一、產品數量統計
打開ERP系統-統計-銷售欄目統計-產品統計分析-產品銷售(數量)統計,選擇需要統計選項,如按人員分布、區域分布、行業分布等,進入統計頁面後自定義選擇統計條件即可。
除此之外,智邦國際ERP還可以實時查看產品數據的銷售明細表、采購明細表、退貨明細表、采購銷售追蹤表、利潤明細表、庫存變動表、產品出庫業績對比表等數據,它將企業產品數據完整整合,以先進的管理理念和前瞻性思想為企業管理方面提供戰略性參考價值,幫助企業從根本上改變生產管理模式,提升效益。