導航:首頁 > 研究方法 > 研究多邊形內角和用什麼方法

研究多邊形內角和用什麼方法

發布時間:2023-05-24 08:38:10

A. 多邊形內角和有幾種求法

求法1:在n邊形內任取一點O,連結O與各個頂點,把n邊形分成n個三角形.
彎歲因為這n個三角形的內角的和等於n×180°,以O為公共頂點的n個角的和是360°
所以n邊形的內角和=n×180°-2×180°=(n-2)×180°
求法2:連結多邊形的任一頂點與其不相鄰的各個頂點的線段,把n邊形分成(n-2)個三角形.
因為這(n-埋友睜2)個三角形的內角和都等於(n-2)×180°
所告祥以n邊形的內角和=(n-2)×180°
求法3:在n邊形的任意一邊上任取一點P,連結P點與其不相鄰的其它各頂點的線段可以把n邊形分成(n-1)個三角形,
這(n-1)個三角形的內角和等於(n-1)×180°
以P為公共頂點的(n-1)個角的和是180°
所以n邊形的內角和是(n-1)×180°-180°=(n-2)×180°

B. 多邊形內角和的推導方法

對於n邊形的內角和公式:n邊形的內角和=(n-2)×180°,其推導方法主要有以下幾種:
方法二:在n邊形內任取一點,然後把這一點與各頂點連結,將n邊形分割為n個三角形,這n個三角形的內角和比n邊形的內角和恰好多了一個周角360°,因此n邊形的內角和=180°×n-360°;
方法三:在n邊形的一邊上取一點,把這一點與各頂點連結,把n邊形分割為(n-1)個三角形,這些三角形的內角和比n邊形的內角和多出了一個平角,因此,n邊形的內角和=(n-1)×180°-180;
方法四:在n邊形外任取一點,然後把這一點與各頂點連結,將n邊形分割為n個三角形,這n個三角形的內角和比n邊形的內角和恰好多出了兩個三角形內角和,因此n邊形的內角和=n×180°-2×180°.

閱讀全文

與研究多邊形內角和用什麼方法相關的資料

熱點內容
506焊條的使用方法和技巧 瀏覽:77
食用鐵防銹的方法 瀏覽:709
感動人的簡單方法 瀏覽:480
治療濕氣重的方法 瀏覽:119
宮頸癌檢測的方法 瀏覽:858
家庭黃精種植方法 瀏覽:80
工程檢測方法公司 瀏覽:64
啞鈴鍛煉力氣的方法 瀏覽:877
調整電梯平層的方法有哪些 瀏覽:943
哪些方法可以凈化空氣 瀏覽:2
ora01555解決方法 瀏覽:716
中醫打呼嚕怎樣治療方法 瀏覽:816
兩塊大木板拼接用什麼方法 瀏覽:809
萬用表測量igbt好壞測量方法 瀏覽:230
圓的認識及計算方法 瀏覽:395
飛機卧鋪安裝方法 瀏覽:888
如何使用教育教學方法 瀏覽:219
打比方方法句子有哪些 瀏覽:964
大豆褐斑病圖片及治療方法 瀏覽:476