導航:首頁 > 研究方法 > 傳統分析建模的方法

傳統分析建模的方法

發布時間:2023-05-16 21:31:47

Ⅰ 數學建模主要有哪些分析方法

2常用的建模方法(I)初等數學法。主要用於一些靜態、線性、確定性的模型。例如,席位分配問題,學生成績的比較,一些簡單的傳染病靜態模型。(2)數據分析法。從大量的觀測數據中,利用統計方法建立數學模型,常見的有:回歸分析法,時序分析法。(3)模擬和其他方法。主要有計算機模擬(是一種統計估計方法,等效於抽樣試驗,可以離散系統模擬和連續系統模擬),因子試驗法(主要是在系統上做局部試驗,根據試驗結果進行不斷分析修改,求得所需模型結構),人工現實法(基於對系統的了解和所要達到的目標,人為地組成一個系統)。(4)層次分析法。主要用於有關經濟計劃和管理、能源決策和分配、行為科學、軍事科學、軍事指揮、運輸、農業、教育、人才、醫療、環境等領域,以便進行決策、評價、分析、預測等。該方法關鍵的一步是建立層次結構模型。

Ⅱ 建模的五種基本方法

量綱分析法

量綱分析是20世紀初提出的在物理領域中建立數學模型的一種方法,它是在經驗和實驗的基礎上,利用物理定律的量綱齊次性,確定各物理量之間的關系。它是一種數學分析方法,通過量綱分析,可以正確地分析各變數之間的關系,簡化實驗和便於成果整理。

在國際單位制中,有七個基本量:質量、長度、時間、電流、溫度、光強度和物質的量,它們的量綱分別為M、L、T、I、H、J和N,稱為基本量綱。

量綱分析法常常用於定性地研究某些關系和性質,利用量綱齊次原則尋求物理量之間的關系,在數學建模過程中常常進行無量綱化,無量綱化是根據量綱分析思想,恰當地選擇特徵尺度將有量綱量化為無量綱量,從而達到減少參數、簡化模型的效果。

差分法

差分法的數學思想是通過taylor級數展開等方法把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而建立以網格節點上的值為未知數的方程組,將微分問題轉化為代數問題,是建立離散動態系統數學模型的有效方法。

構造差分的方法有多種形式,目前主要採用的是泰勒級數展開方法。其基本的差分表達式主要有以下幾種形式:一階向前差分、一階向後差分、一階中心差分和二階中心差分等,其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。通過對時間和空間這幾種不同差分格式的組合,可以組合成不同的差分計算格式。

差分法的解題步驟為:建立微分方程;構造差分格式;求解差分方程;精度分析和檢驗。

變分法

變分法是處理函數的函數的數學領域,即泛函問題,和處理數的函數的普通微積分相對。這樣的泛函可以通過未知函數的積分和它的導數來構造,最終尋求的是極值函數。現實中很多現象可以表達為泛函極小問題,即變分問題。變分問題的求解方法通常有兩種:古典變分法和最優控制論。受基礎知識的制約,數學建模競賽大專組的建模方法使用變分法較少。

圖論法

數學建模中的圖論方法是一種獨特的方法,圖論建模是指對一些抽象事物進行抽象、化簡,並用圖來描述事物特徵及內在聯系的過程。圖論是研究由線連成的點集的理論。一個圖中的結點表示對象,兩點之間的連線表示兩對象之間具有某種特定關系(先後關系、勝負關系、傳遞關系和連接關系等)。事實上,任何一個包含了某種二元關系的系統都可以用圖形來模擬。因此,圖論是研究自然科學、工程技術、經濟問題、管理及其他社會問題的一個重要現代數學工具,更是成為了數學建模的一個必備工具。

Ⅲ 數據建模的分析方法有哪些並寫出他們的大概介紹

從目前的資料庫及數據倉庫建模方法來說,主要分為四類。

第一類是大家最為熟悉的關系資料庫的三範式建模,通常我們將三範式建模方法用於建立各種操作型資料庫系統。

第二類是Inmon提倡的三範式數據倉庫建模,它和操作型資料庫系統的三範式建模在側重點上有些不同。Inmon的數據倉庫建模方法分為三層,第一層是實體關系層,也即企業的業務數據模型層,在這一層上和企業的操作型資料庫系統建模方法是相同的;第二層是數據項集層,在這一層的建模方法根據數據的產生頻率及訪問頻率等因素與企業的操作型資料庫系統的建模方法產生了不同;第三層物理層是第二層的具體實現。

第三類是Kimball提倡的數據倉庫的維度建模,我們一般也稱之為星型結構建模,有時也加入一些雪花模型在裡面。維度建模是一種面向用戶需求的、容易理解的、訪問效率高的建模方法,也是筆者比較喜歡的一種建模方式。

第四類是更為靈活的一種建模方式,通常用於後台的數據准備區,建模的方式不拘一格,以能滿足需要為目的,建好的表不對用戶提供介面,多為臨時表。

下面簡單談談第四類建模方法的一些的經驗。

數據准備區有一個最大的特點,就是不會直接面對用戶,所以對數據准備區中的表進行操作的人只有ETL工程師。ETL工程師可以自己來決定表中數據的范圍和數據的生命周期。下面舉兩個例子:

1)數據范圍小的臨時表

當需要整合或清洗的數據量過大時,我們可以建立同樣結構的臨時表,在臨時表中只保留我們需要處理的部分數據。這樣,不論是更新還是對表中某些項的計算都會效率提高很多。處理好的數據發送入准備載入到數據倉庫中的表中,最後一次性載入入數據倉庫。

2)帶有冗餘欄位的臨時表

由於數據准備區中的表只有自己使用,所以建立冗餘欄位可以起到很好的作用而不用承擔風險。

舉例來說,筆者在項目中曾遇到這樣的需求,客戶表{客戶ID,客戶凈扣值},債項表{債項ID,客戶ID,債項余額,債項凈扣值},即客戶和債項是一對多的關系。其中,客戶凈扣值和債項余額已知,需要計算債項凈扣值。計算的規則是按債項余額的比例分配客戶的凈扣值。這時,我們可以給兩個表增加幾個冗餘欄位,如客戶表{客戶ID,客戶凈扣值,客戶余額},債項表{債項ID,客戶ID,債項余額,債項凈扣值,客戶余額,客戶凈扣值}。這樣通過三條SQL就可以直接完成整個計算過程。將債項余額匯總到客戶余額,將客戶余額和客戶凈扣值冗餘到債項表中,在債項表中通過(債項余額×客戶凈扣值/客戶余額)公式即可直接計算處債項凈扣值。

另外還有很多大家可以發揮的建表方式,如不需要主鍵的臨時表等等。總結來說,正因為數據准備區是不對用戶提供介面的,所以我們一定要利用好這一點,以給我們的數據處理工作帶來最大的便利為目的來進行數據准備區的表設計。

Ⅳ 數學建模有哪些方法

問題一:數學建模中綜合評價的方法有哪些? 綜合評價有許多不同的方法,如綜合指數法、TOPSIS法、層次分析法、RSR法、模糊綜合評價法、灰色系統法等,這些方法各具特色,各有利弊。
綜合評價的一般步驟
1.根據評價目的選擇恰當的評價指標,這些指標具有很好的代表性、區別性強,而且往往可以測量,篩選評價指標主要依據專業知識,即根據有關的專業理論和實踐,來分析各評價指標對結果的影響,挑選那些代表性、確定性好,有一定區別能力又互相獨立的指標組成評價指標體系。
2.根據評價目的,確定諸評價指標在對某事物評價中的相對重要性,或各指標的權重; 3.合理確定各單個指標的評價等級及其界限;
4.根據評價目的,數據特徵,選擇適當的綜合評價方法,並根據已掌握的歷史資料,建立綜合評價模型;
5.確定多指標綜合評價的等級數量界限,在對同類事物綜合評價的應用實踐中,對選用的評價模型進行考察,並不斷修改補充,使之具有一定的科學性、實用性與先進性,然後推廣應用。

問題二:參加數學建模有哪些必學的演算法 1. 蒙特卡洛方法:
又稱計算機隨機性模擬方法,也稱統計實驗方法。可以通過模擬來檢驗自己模型的正確性。
2. 數據擬合、參數估計、插值等數據處理
比賽中常遇到大量的數據需要處理,而處理的數據的關鍵就在於這些方法,通常使用matlab輔助,與圖形結合時還可處理很多有關擬合的問題。
3. 規劃類問題演算法:
包括線性規劃、整數規劃、多元規劃、二次規劃等;競賽中又很多問題都和規劃有關,可以說不少的模型都可以歸結為一組不等式作為約束條件,幾個函數表達式作為目標函數的問題,這類問題,求解是關鍵。
這類問題一般用lingo軟體就能求解。
4. 圖論問題:
主要是考察這類問題的演算法,包括:Dijkstra、Floyd、Prime、Bellman-Ford,最大流、二分匹配等。熟悉ACM的人來說,應該都不難。
5. 計算機演算法設計中的問題:
演算法設計包括:動態規劃、回溯搜索、分治、分支定界法(求解整數解)等。
6. 最優化理論的三大非經典演算法:
a) 模擬退火法(SA)
b) 神經網路(NN)
c) 遺傳演算法(GA)
7. 網格演算法和窮舉演算法
8. 連續問題離散化的方法
因為計算機只能處理離散化的問題,但是實際中數據大多是連續的,因此需要將連續問題離散化之後再用計算機求解。
如:差分代替微分、求和代替積分等思想都是把連續問題離散化的常用方法
9. 數值分析方法
主要研究各種求解數學問題的數值計算方法,特別是適用於計算機實現的方法與演算法。
包括:函數的數值逼近、數值微分與數值積分、非線性返程的數值解法、數值代數、常微分方程數值解等。
主要應用matlab進行求解。
10. 圖像處理演算法
這部分主要是使用matlab進行圖像處理。
包括展示圖片,進行問題解決說明等。

問題三:數學建模有哪些常用方法 積累演算法跟模型,做做真題,無他

Ⅳ 數學建模的方法有哪些

  1. 預測模塊:灰色預測、時間序列預測、神經網路預測、曲線擬合(線性回歸);

  2. 歸類判別:歐氏距離判別、fisher判別等 ;

  3. 圖論:最短路徑求法 ;

  4. 最優化:列方程組 用lindo 或 lingo軟體解 ;

  5. 其他方法:層次分析法 馬爾可夫鏈 主成分析法 等 。

建模常用演算法,僅供參考:

  1. 蒙特卡羅演算法(該演算法又稱隨機性模擬演算法,是通過計算機模擬來解決 問題的演算法,同時間=可以通過模擬可以來檢驗自己模型的正確性,是比賽時必 用的方法) 。

  2. 數據擬合、參數估計、插值等數據處理演算法(比賽中通常會遇到大量的數 據需要處理,而處理數據的關鍵就在於這些演算法,通常使用Matlab 作為工具) 。

  3. 線性規劃、整數規劃、多元規劃、二次規劃等規劃類問題(建模競賽大多 數問題屬於最優化問題,很多時候這些問題可以用數學規劃演算法來描述,通 常使用Lindo、Lingo 軟體實現) 。

  4. 圖論演算法(這類演算法可以分為很多種,包括最短路、網路流、二分圖等算 法,涉及到圖論的問題可以用這些方法解決,需要認真准備) 。

  5. 動態規劃、回溯搜索、分治演算法、分支定界等計算機演算法(這些演算法是算 法設計中比較常用的方法,很多場合可以用到競賽中) 。

  6. 最優化理論的三大非經典演算法:模擬退火法、神經網路、遺傳演算法(這些 問題是用來解決一些較困難的最優化問題的演算法,對於有些問題非常有幫助, 但是演算法的實現比較困難,需慎重使用) 。

  7. 網格演算法和窮舉法(網格演算法和窮舉法都是暴力搜索最優點的演算法,在很 多競賽題中有應用,當重點討論模型本身而輕視演算法的時候,可以使用這種 暴力方案,最好使用一些高級語言作為編程工具) 。

  8. 一些連續離散化方法(很多問題都是實際來的,數據可以是連續的,而計 算機只認的是離散的數據,因此將其離散化後進行差分代替微分、求和代替 積分等思想是非常重要的) 。

  9. 數值分析演算法(如果在比賽中採用高級語言進行編程的話,那一些數值分 析中常用的演算法比如方程組求解、矩陣運算、函數積分等演算法就需要額外編 寫庫函數進行調用) 。

  10. 圖象處理演算法(賽題中有一類問題與圖形有關,即使與圖形無關,論文 中也應該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問 題,通常使用Matlab 進行處理)。

Ⅵ 數學建模有哪些方法

一、機理分析法 從基本物理定律以及系統的結構數據來推導出模型.
1.比例分析法--建立變數之間函數關系的最基本最常用的方法.
2.代數方法--求解離散問題(離散的數據、符號、圖形)的主要方 法.
3.邏輯方法--是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策等學科中得到廣泛應用.
4.常微分方程--解決兩個變數之間的變化規律,關鍵是建立"瞬時變化率"的表達式.
5.偏微分方程--解決因變數與兩個以上自變數之間的變化規律.
二、數據分析法 從大量的觀測數據利用統計方法建立數學模型.
1.回歸分析法--用於對函數f(x)的一組觀測值(xi,fi)i=1,2… n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法.
2.時序分析法--處理的是動態的相關數據,又稱為過程統計方法.
三、模擬和其他方法
1.計算機模擬(模擬)--實質上是統計估計方法,等效於抽樣試驗
① 離散系統模擬--有一組狀態變數.
② 連續系統模擬--有解析表達式或系統結構圖.
2.因子試驗法--在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構.
3.人工現實法--基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的可能變化,人為地組成一個系統.

Ⅶ 常見的建立數學模型的方法有哪幾種各有什麼特點

—般說來建立數學模型的方法大體上可分為兩大類、一類是機理分析方法,一類是測試分析方法.機理分析是根據對現實對象特性的認識、分析其因果關系,找出反映內部機理的規律,建立的模型常有明確的物理或現實意義.

模型准備 首先要了解問題的實際背景,明確建模的目的搜集建模必需的各種信息如現象、數據等,盡量弄清對象的特徵,由此初步確定用哪一類模型,總之是做好建模的准備工作.情況明才能方法對,這一步一定不能忽視,碰到問題要虛心向從事實際工作的同志請教,盡量掌握第一手資料.

模型假設 根據對象的特徵和建模的目的,對問題進行必要的、合理的簡化,用精確的語言做出假設,可以說是建模的關鍵一步.一般地說,一個實際問題不經過簡化假設就很難翻譯成數學問題,即使可能,也很難求解.不同的簡化假設會得到不同的模型.假設作得不合理或過份簡單,會導致模型失敗或部分失敗,於是應該修改和補充假設;假設作得過分詳細,試圖把復雜對象的各方面因素都考慮進去,可能使你很難甚至無法繼續下一步的工作.通常,作假設的依據,一是出於對問題內在規律的認識,二是來自對數據或現象的分析,也可以是二者的綜合.作假設時既要運用與問題相關的物理、化學、生物、經濟等方面的知識,又要充分發揮想像力、洞察力和判斷力,善於辨別問題的主次,果斷地抓住主要因素,舍棄次要因素,盡量將問題線性化、均勻化.經驗在這里也常起重要作用.寫出假設時,語言要精確,就象做習題時寫出已知條件那樣.
模型構成 根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量(常量和變數)之間的等式(或不等式)關系或其他數學結構.這里除需要一些相關學科的專門知識外,還常常需要較廣闊的應用數學方面的知識,以開拓思路.當然不能要求對數學學科門門精通,而是要知道這些學科能解決哪一類問題以及大體上怎樣解決.相似類比法,即根據不同對象的某些相似性,借用已知領域的數學模型,也是構造模型的一種方法.建模時還應遵循的一個原則是,盡量採用簡單的數學工具,因為你建立的模型總是希望能有更多的人了解和使用,而不是只供少數專家欣賞.

模型求解 可以採用解方程、畫圖形、證明定理、邏輯運算、數值計算等各種傳統的和近代的數學方法,特別是計算機技術.
模型分析 對模型解答進行數學上的分析,有時要根據問題的性質分析變數間的依賴關系或穩定狀況,有時是根據所得結果給出數學上的預報,有時則可能要給出數學上的最優決策或控制,不論哪種情況還常常需要進行誤差分析、模型對數據的穩定性或靈敏性分析等.
模型檢驗 把數學上分析的結果翻譯回到實際問題,並用實際的現象、數據與之比較,檢驗模型的合理性和適用性.這一步對於建模的成敗是非常重要的,要以嚴肅認真的態度來對待.當然,有些模型如核戰爭模型就不可能要求接受實際的檢驗了.模型檢驗的結果如果不符合或者部分不符合實際,問題通常出在模型假設上,應該修改、補充假設,重新建模.有些模型要經過幾次反復,不斷完善,直到檢驗結果獲得某種程度上的滿意.
模型應用 應用的方式自然取決於問題的性質和建模的目的,這方面的內容不是本書討論的范圍。
應當指出,並不是所有建模過程都要經過這些步驟,有時各步驟之間的界限也不那麼分明.建模時不應拘泥於形式上的按部就班,本書的建模實例就採取了靈活的表述方式

Ⅷ 數學建模中的分析方法有哪些

數學建模分析方法大體分為機理分析和測試分析兩種。
機理分析:根據對客觀事物特性的認識,找出反映內部機理的數量規律,建立的模型常有明確的物理或現實意義。
測試分析:將研究的對象看做一個「黑箱」系統(意思是它的內部機理看不清楚),通過對系統輸入、輸出數據的測量和統計分析,按照一定的准則找出與數據擬合最好的模型。
希望對你有幫助

閱讀全文

與傳統分析建模的方法相關的資料

熱點內容
畫畫到瓶頸期如何突破有什麼方法 瀏覽:190
潮州食品安全檢測試劑盒使用方法 瀏覽:898
如何學會音序的使用方法 瀏覽:146
用什麼方法給臉補水 瀏覽:557
燙傷後正確的處理方法 瀏覽:766
腳跟骨刺的治療方法白醋 瀏覽:389
花楸果怎麼吃方法 瀏覽:61
瘦臉方法的視頻 瀏覽:314
窗簾掛球打結方法視頻 瀏覽:296
快速增加電腦網速的方法 瀏覽:278
電腦登錄自己微信的方法 瀏覽:332
如何製作亮片製作方法 瀏覽:637
頸椎直反弓的鍛煉方法 瀏覽:225
論述糖尿病的營養治療方法有哪些 瀏覽:75
網路面板不能用的檢測方法 瀏覽:708
眼睛黑眼圈怎麼辦有什麼方法 瀏覽:535
用手機繞地轉一圈測出畝數的方法 瀏覽:148
新舊玉米粒的鑒別方法視頻 瀏覽:868
踢腳線安裝方法與尺寸 瀏覽:403
蟹爪蘭的養殖方法視頻 瀏覽:766