導航:首頁 > 研究方法 > 大數據分析方法與應用

大數據分析方法與應用

發布時間:2023-05-14 02:14:25

㈠ 最常用的大數據分析方法哪些

1、對比分析

對比分析法不管是從生活中還是工作中,都會經常用到,對比分析法也稱比較分析法,是將兩個或兩個以上相互聯系的指標數據進行比較,分析其變化情況,了解事物的本質特徵和發展規律。


在數據分析中,常用到的分3類:時間對比、空間對比以及標准對比。


2、漏斗分析


轉化漏斗分析是業務分析的基本模型,最常見的是把最終的轉化設置為某種目的的實現,最典型的就是完成交易。


其中,我們往往關注三個要點:


①從開始到結尾,整體的轉化效率是多少?


②每一步的轉化率是多少?


③哪一步流失最多,原因在什麼地方?流失的用戶符合哪些特徵?


3、用戶分析


用戶分析是互聯網運營的核心,常用的分析方法包括:活躍分析,留存分析,用戶分群,用戶畫像,用戶細查等。


可將用戶活躍細分為瀏覽活躍,互動活躍,交易活躍等,通過活躍行為的細分,掌握關鍵行為指標;通過用戶行為事件序列,用戶屬性進行分群,觀察分群用戶的訪問,瀏覽,注冊,互動,交易等行為,從而真正把握不同用戶類型的特點,提供有針對性的產品和服務。


4、指標分析


在實際工作中,這個方法應用的最為廣泛,也是在使用其他方法進行分析的同時搭配使用突出問題關鍵點的方法,指直接運用統計學中的一些基礎指標來做數據分析,比如平均數、眾數、中位數、最大值、最小值等。在選擇具體使用哪個基礎指標時,需要考慮結果的取向性。


5、埋點分析


只有採集了足夠的基礎數據,才能通過各種分析方法得到需要的分析結果。


通過分析用戶行為,並細分為:瀏覽行為,輕度交互,重度交互,交易行為,對於瀏覽行為和輕度交互行為的點擊按鈕等事件,因其使用頻繁,數據簡單,採用無埋點技術實現自助埋點,即可以提高數據分析的實效性,需要的數據可立即提取,又大量減少技術人員的工作量,需要採集更豐富信息的行為。

如何進行大數據分析及處理

探碼科技大數據分析及處理過程


聚雲化雨的處理方式

㈢ 大數據分析的基本方法有哪些

1.可視化分析


不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。


2. 數據挖掘演算法


可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。


3. 預測性分析能力


數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。


4. 語義引擎


由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。


5. 數據質量和數據管理


數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。

㈣ 如何進行大數據分析及處理

探碼科技大數據分析及處理過程


聚雲化雨的處理方式

㈤ 大數據的數據分析方法有哪些如何學習

  1. 漏斗分析法

    漏斗分析模型是業務分析中的重要方法,最常見的是應用於營銷分析中,由於營銷過程中的每個關鍵節點都會影響到最終的結果,所以在精細化運營應用廣泛的今天,漏斗分析方法可以幫助我們把握每個轉化節點的效率,從而優化整個業務流程。

  2. 對比分析法

    對比分析法不管是從生活中還是工作中,都會經常用到,對比分析法也稱比較分析法,是將兩個或兩個以上相互聯系的指標數據進行比較,分析其變化情況,了解事物的本質特徵和發展規律。

    在數據分析中,常用到的分3類:時間對比、空間對比以及標准對比。

  3. 用戶分析法

    用戶分析是互聯網運營的核心,常用的分析方法包括:活躍分析,留存分析,用戶分群,用戶畫像等。在剛剛說到的RARRA模型中,用戶活躍和留存是非常重要的環節,通過對用戶行為數據的分析,對產品或網頁設計進行優化,對用戶進行適當引導等。

    通常我們會日常監控「日活」、「月活」等用戶活躍數據,來了解新增的活躍用戶數據,了解產品或網頁是否得到了更多人的關注,但是同時,也需要做留存分析,關注新增的用戶是否真正的留存下來成為固定用戶,留存數據才是真正的用戶增長數據,才能反映一段時間產品的使用情況,關於活躍率、留存率的計算。

  4. 細分分析法

    在數據分析概念被廣泛重視的今天,粗略的數據分析很難真正發現問題,精細化數據分析成為真正有效的方法,所以細分分析法是在本來的數據分析上做的更為深入和精細化。

  5. 指標分析法

在實際工作中,這個方法應用的最為廣泛,也是在使用其他方法進行分析的同時搭配使用突出問題關鍵點的方法,指直接運用統計學中的一些基礎指標來做數據分析,比如平均數、眾數、中位數、最大值、最小值等。在選擇具體使用哪個基礎指標時,需要考慮結果的取向性。

㈥ 大數據分析:方法與應用的介紹

《大數據分析:方法與應用》是2013年清華大學出版社出版的圖書,作者是王星。本書介紹數據挖掘、統計學習和模式識別中與大數據分析相關的理論、方法及工具。

閱讀全文

與大數據分析方法與應用相關的資料

熱點內容
研究產後盆底肌康復的方法 瀏覽:801
人飛起來最簡單的方法 瀏覽:4
緩存會在哪裡設置方法 瀏覽:785
快速收肘的方法 瀏覽:576
手機屏幕保護時間在哪裡設置方法 瀏覽:917
鑒定別人的手機的方法 瀏覽:618
直播發題的技巧和方法 瀏覽:271
感冒身體發熱怎麼辦簡單的方法 瀏覽:197
紫砂水洗使用方法 瀏覽:414
小孩支氣管治療方法 瀏覽:683
杏種子的種植方法 瀏覽:930
涼席如何除蟎最有效方法 瀏覽:476
研究心理學的方法內容及優缺點 瀏覽:505
家用魚缸水泵安裝方法 瀏覽:715
物理降溫頭枕冰袋正確方法圖片 瀏覽:528
六十四卦五行及卦運快速記憶方法 瀏覽:980
信管沖突解決的五種方法 瀏覽:587
電力學習方法研究報告2000字 瀏覽:111
躺著看手機瘦腿的最快方法 瀏覽:500
私募基金浮動收益計算方法 瀏覽:424