① 有限元法有什麼特點和優勢
一、有限元法的特點:
1、把連續體劃分成有限個單元,把單元的交界結點(節點)作為離散點;
2、不考慮微分方程,而從單元本身特點進行研究。
3、理論基礎簡明,物理概念清晰,且可在不同的水平上建立起對該法的理解。
4、具有靈活性和適用性,適應性強。它可以把形狀不同、性質不同的單元組集起來求解,故特別適用於求解由不同構件組合的結構,應用范圍極為廣泛。
它不僅能成功地處理如應力分析中的非均勻材料、各向異性材料、非線性應力、應變以及復雜的邊界條件等問題,且隨著其理論基礎和方法的逐步完善,還能成功地用來求解如熱傳導、流體力學及電磁場領域的許多問題。
5、在具體推導運算過程中,廣泛採用了矩陣方法。
二、有限元法的優點
1、物理概念淺顯清晰,易於掌握。有限元法不僅可以通過非常直觀的物理解釋來被掌握,而且可以通過數學理論嚴謹的分析掌握方法的本質。
2、描述簡單,利於推廣。有限元法由於採用了矩陣的表達形式,從而可以非常簡單的描述問題,使求解問題的方法規范化,便於編制計算機程序,並且充分利用了計算機的高速運算和大量存儲功能。
3、方法優越。對於存在非常復雜的因素組合時候,比如不均勻的材料特性、任意的邊界條件、復雜的幾何形狀等混雜在一起的時候,有限元法都能靈活的處理和求解。
4、應用范圍廣。有限元法不僅能解決結構力學,彈性力學中的各種問題,而且隨著其理論基礎與方法的逐步改進與成熟,還可以廣泛地用來求解熱傳導、流體力學及電磁場等其他領域的諸多問題。不僅如此,在所有連續介質問題和場問題中,有限元法都得到了很好的應用。