㈠ 統計研究的基本方法有哪幾種
抽樣平均誤差是測定抽樣誤差的基本指標。它是隨機抽樣可變總體平均數(抽樣平均數的所有可能值)與全及平均數之間離差...這個指標反映抽樣平均數的所有可能值對全及平均數的平均離散程度,即反映誤差平均值的大小
分布數列是統計整理的一種重要形式,是統計描述和統計分析的一種重要方法,它可以說明總體的分布特徵、內部結構,並可據以研究總體某一標志值的平均水平及其變動的規律性。
1、統計學:是運用數理統計的基本原理和方法研究預防醫學和衛生事業管理中資料的收集,整理和分析的一門應用科學。具體地講,是按照設計方案去收集、整理、分析數據,並對數據結果進行解釋,從而做出比較正確的結論。
2、總體:是根據研究目的確定同質的所有觀察單位某種變數的集合。
3、變異:同一性質的事物,其觀察值(變數值)之間的差異。
4、抽樣研究:從所研究的總體中隨機抽取一部分有代表性的樣本進行研究,用樣本指標推論總體,最終達到了解總體的目的。這種用樣本指標推論總體參數的方法稱為抽樣研究。
5、統計描述:用統計圖表或計算統計指標的方法表達一個特定群體的某種現象或特徵。
6、統計推斷:根據樣本資料的特性對總體的特性作估計或推論的方法稱統計推斷,常用方法是參數估計和假設檢驗。
7、概率:是指某事件出現可能性大小的度量,以符號P表示。
8、醫學參考值范圍:參考值范圍又稱正常值范圍。醫學上常把包括絕大多數人某項指標的數值范圍稱為該指標的參考值范圍。
9、正態分布規律:實際工作中,經常需要了解正態曲線下橫軸上的一定區域的面積占總面積的百分數,用以估計該區間的觀察例數占總例數的百分數,或變數值落在該區間的頻數或概率。
10、可比性:是指對研究結果有影響的非處理因素在各處理組之間盡可能相
同或相近。
11、動態數列:是一系列按時間順序排列起來的統計指標,包括絕對數、相對數或平均數,用以說明事物在時間上的變化和發展趨勢。
12、抽樣誤差:在同一總體中隨機抽取樣本含量相同的若干樣本時,樣本指標之間的差異以及樣本指標與總體指標的差異。
13、標准誤:表示樣本均數間變異程度。
14、率的抽樣誤差:抽樣過程中產生的同一總體中均數之間的差異稱為均數的抽樣誤差,率之間的差異稱為率的抽樣誤差。
15、參數估計:是指用樣本指標(稱為統計量)估計總體指標(稱為參數)。
16、可信區間:總體參數的所在范圍通常稱為參數的可信區間或置信區間,即該區間以一定的概率(如95%或99%)包含總體參數。
17、I型錯誤:拒絕了實際撒謊能夠成立的H0,這類「棄真」的錯誤稱為I型錯誤。
18、II型錯誤:接受了實際撒謊能夠不成立的H0,這類「存偽」的錯誤稱為II型錯誤。
19、檢驗效能:1-b稱為檢驗效能又稱為把握度。它的含義是:當兩總體確實有差別時,按規定的檢驗水準a,能夠發現兩總體間差別的能力。
20、四格表資料:兩個樣本率的資料又稱為四格表資料,在四格表資料中兩個樣本的實際發生頻數和實際未發生頻數為基本數據,其他數據均可由這四個基本數據推算出來。
21、列聯表資料:對同一樣本資料按其兩個無序分類變數(行變數和列變數)歸納成雙向交叉排列的統計表,其行變數可分為R類,列變數可分為C類,這種表稱為R*C列聯表。
22、參數檢驗:是一種要求樣本來自總體分布型是已知的(如正態分布),在這種假設的基礎上,對總體參數(如總體均數)進行統計推斷的假設檢驗。
23、非參數檢驗:是一種不依賴總體分布類型,也不對總體參數(如總體均數)進行統計推斷的假設檢驗。
24、秩次:即通常意義上的序號,實際上就是將觀察值按順序由小到大排列,並用序號代替了變數值本身。
25、直線相關系數:它是說明具有直線關系的兩個變數間,相關關系的密切程度與相關方向的統計指標。相關系數沒有單位,取值范圍是-1〈=r〈=1,r的絕對值越大表明兩變數的關系越密切。
26、完全負相關:這是一種極為特殊的負相關關系,從散點圖上可以看出,由x與y構成的散點完全分布在一條直線上,x增加,y相應減少,算得的相關系數r=-1。
27、正相關:它是說明具有直線關系的兩個變數間,存在有正的相關方向,即當x增加時,y有相應增大的趨勢,所算得的相關系數r為正值。
28、等級相關:是對等級數據作相關分析,它又稱為秩相關,是一種非參數統計方法。
29、評價:是通過對某些標准來判斷觀測結果,並賦予這種結果以一定的意義和價值的過程。
30、綜合評價:是指人們根據不同的評價目的,選擇相應的評價形式,據此選擇多個因素或指標,並通過一定的數學模型,將多個評價因素或指標轉化為能反映評價對象總體特徵的信息。
31、優序法:為了比較某幾個事物或方案的優劣,在選定各項評價指標後,將待評價的對象或方案就各項評價指標的測量值大小分別排列,並分別對各序號(等級)以相應的評分值即優序數,然後綜合諸評價指標,分別計算評價對象的總賦優序數,並按總賦優序大小評定其優順序的方法即優序法。
32、Topsis:Topsis法常用於系統工程中有限方案多目標決策分析,此外,也可用於效益評價、衛生決策和衛生事業管理等多領域。
33、根本死因:WHO規定,根本死因是指:「(a)引起直接導致死亡的一系列病態事件的那些疾病或損傷,或者(b)造成致命損傷的事故或暴力的情況。」
34、衛生服務需要:是指人們因疾病影響健康,引起人體正常活動的障礙,實際應當接受各種衛生服務的需要(如預防保健、治療、康復)。
35、衛生服務調查統計:是衛生統計的主要內容之一,衛生服務調查統計是從衛生服務資料的設計、收集、整理、分析的角度,來闡述衛生服務研究的特點、研究方法和注意事項,以便使衛生服務研究服務更具有科學性。
36、衛生服務調查:是指對衛生服務狀況、人群健康的危險因素、人群衛生服務的需求和利用、衛生服務資源的分配和利用所進行的一種社會調查。
37、統計表:是以表格的形式列出統計指標,它是對資料進行統計描述時的一種常用手段。
38、統計圖:是以各種幾何圖形(如點、線、面或立體)顯示數據的大小、升降、分布以及關系等,它也是對資料進行統計描述時的一種常用手段。
39、均數的抽樣誤差:統計學上,對於抽樣過程中產生的同一總體中均數之間的差異稱為均數的抽樣誤差。
1、對比分析法
對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。
橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。
縱向對比指的是同一事物在時間維度上的變化,例如,環比、同比和定基比,也就是本月銷售額與上月銷售額的對比,本年度1月份銷售額與上一年度1月份銷售額的對比,本年度每月銷售額分別與上一年度平均銷售額的對比等。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。
2、分組分析法
分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。
根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。
3、預測分析法
預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。
4、漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡。
最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。
5、AB測試分析法
AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。
例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。
除此之外,要想做好數據分析,讀者還需掌握一定的數學基礎,例如,基本統計量的概念(均值、方差、眾數、中位數等),分散性和變異性的度量指標(極差、四分位數、四分位距、百分位數等),數據分布(幾何分布、二項分布等),以及概率論基礎、統計抽樣、置信區間和假設檢驗等內容,通過相關指標和概念的應用,讓數據分析結果更具專業性。
㈢ 幾種常用的統計分析方法有哪幾種
t檢驗 方差分析 卡方檢驗 回歸
㈣ 統計分析法主要包括哪些
統計分析方法主要包括線性回歸分析方法、判別分析方法、聚類分析方法、主成份分析方法、因子分析方法、對應分析方法、典型相關分析方法以及片最小二乘回歸分析方法等。
㈤ 「統計學」的基本方法有哪幾種
「統計學」的基本方法有:
(一)大量觀察法。
(二)統計分組法。
(三)綜合指標法。
(四)時間數列分析法。
(五)指數分析法。
(六)相關分析法。
第三類是為了進行理論性推理而採用的例示性的數字。配第把這種運用數字和符號進行的推理稱之為「代數的演算法」。
從配第使用數據的方法看,「政治算數」階段的統計學已經比較明顯地體現了「收集和分析數據的科學和藝術」特點,統計實證方法和理論分析方法渾然一體,這種方法即使是現代統計學也依然繼承。
配第在書中使用的數字有三類:
第一類是對社會經濟現象進行統計調查和經驗觀察得到的數字。因為受歷史條件的限制,書中通過嚴格的統計調查得到的數據少,根據經驗得出的數字多;
第二類是運用某種數學方法推算出來的數字。其推算方法可分為三種:
(1)以已知數或已知量為基礎,循著某種具體關系進行推算的方法。
(2)通過運用數字的理論性推理來進行推算的方法。
(3)以平均數為基礎進行推算的方法」。
㈥ 常用統計方法有哪些
1、計量資料的統計方法
分析計量資料的統計分析方法可分為參數檢驗法和非參數檢驗法。
參數檢驗法主要為t檢驗和 方差分析(ANOVN,即F檢驗)等,兩組間均數比較時常用t檢驗和u檢驗,兩組以上均數比較時常用方差分析;非參數檢驗法主要包括秩和檢驗等。t檢驗可分為單組設計資料的t檢驗、配對設計資料的t檢驗和成組設計資料的t檢驗;當兩個小 樣本比較時要求兩 總體分布為 正態分布且方差齊性,若不能滿足以上要求,宜用t 檢驗或非參數方法( 秩和檢驗)。 方差分析可用於兩個以上 樣本均數的比較,應用該方法時,要求各個樣本是相互獨立的隨機樣本,各樣本來自正態總體且各處理組總體方差齊性。根據設計類型不同,方差分析中又包含了多種不同的方法。對於 定量資料,應根據所採用的設計類型、資料所具備的條件和分析目的,選用合適的統計分析方法,不應盲目套用t檢驗和 單因素方差分析。
2、計數資料的統計方法
計數資料的統計方法主要針對四格表和R×C表利用檢驗進行分析。
檢驗或u檢驗,若不能滿足 檢驗:當計數資料呈配對設計時,獲得的四格表為配對四格表,其用到的檢驗公式和校正公式可參考書籍。 R×C表可以分為雙向無序,單向有序、雙向有序屬性相同和雙向有序屬性不同四類,不同類的行列表根據其研究目的,其選擇的方法也不一樣。
3、等級資料的統計方法
等級資料(有序變數)是對性質和類別的等級進行分組,再清點每組觀察單位個數所得到的資料。在臨床醫學資料中,常遇到一些定性指標,如臨床療效的評價、疾病的臨床分期、病症嚴重程度的臨床分級等,對這些指標常採用分成若干個等級然後分類計數的辦法來解決它的量化問題,這樣的資料統計上稱為等級資料。
統計方法的選擇:
統計資料豐富且錯綜復雜,要想做到合理選用統計分析方法並非易事。對於同一 個資料,若選擇不同的統計分析方法處理,有時其結論是截然不同的。
正確選擇統計方法的依據是:
①根據研究的目的,明確研究試驗設計類型、研究因素與水平數;
②確定數據特徵(是否正態分布等)和樣本量大小;
③ 正確判斷統計資料所對應的類型(計量、計數和等級資料),同時應根據統計方法的適宜條件進行正確的統計量值計算;
最後,還要根據專業知識與資料的實際情況,結合統計學原則,靈活地選擇統計分析方法。
㈦ 數據統計分析方法有幾種
數據分析的方法有很多種,不同領域不同專業有各自常用的方法。
「在線SPSS」SPSSAU中提供百種分析方法,可以登錄查看。
㈧ 統計學的研究方法有幾種
統計學的基本研究方法有5種。
大量觀察法
這是統計活動過程中搜集數據資料階段(即統計調查階段)的基本方法:即要對所研究現象總體中的足夠多數的個體進行觀察和研究,以期認識具有規律性的總體數量特徵。大量觀察法的數理依據是大數定律,大數定律是指雖然每個個體受偶然因素的影響作用不同而在數量上幾存有差異,但對總體而言可以相互抵消而呈現出穩定的規律性,因此只有對足夠多數的個體進行觀察,觀察值的綜合結果才會趨向穩定,建立在大量觀察法基礎上的數據資料才會給出一般的結論。統計學的各種調查方法都屬於大量觀察法。
統計分組法
由於所研究現象本身的復雜性、差異性及多層次性,需要我們對所研究現象進行分組或分類研究,以期在同質的基礎上探求不同組或類之間的差異性。統計分組在整個統計活動過程中都佔有重要地位,在統計調查階段可通過統計分組法來搜集不同類的資料,並可使抽樣調查的樣本代表性得以提高(即分層抽樣方式);在統計整理階段可以通過統計分組法使各種數據資料得到分門別類的加工處理和儲存,並為編制分布數列提供基礎;在統計分析階段則可以通過統計分組法來劃分現象類型、研究總體內在結構、比較不同類或組之間的差異(顯著性檢驗)和分析不同變數之間的相關關系。統計學中的統計分組法有傳統分組法、判別分析法和聚類分析法等。
綜合指標法
統計研究現象的數量方面的特徵是通過統計綜合指標來反映的。所謂綜合指標,是指用來從總體上反映所研究現象數量特徵和數量關系的范疇及其數值,常見的有總量指標、相對指標,平均指標和標志變異指標等。綜合指標法在統計學、尤其是社會經濟統計學中佔有十分重要的地位,是描述統計學的核心內容。如何最真實客觀地記錄、描述和反映所研究現象的數量特徵和數量關系,是統計指標理論研究的一大課題。
統計模型法
在以統計指標來反映所研究現象的數量特徵的同時,我們還經常需要對相關現象之間的數量變動關系進行定量研究,以了解某一(些)現象數量變動與另一(些)現象數量變動之間的關系及變動的影響程度。在研究這種數量變動關系時,需要根據具體的研究對象和一定的假定條件,用合適的數學方程來進行模擬,這種方法就叫做統計模型法。
統計推斷法
在統計認識活動中,我們所觀察的往往只是所研究現象總體中的一部分單位,掌握的只是具有隨機性的樣本觀察數據,而認識總體數量特徵是統計研究的目的,這就需要我們根據概率論和樣本分布理論,運用參數估計或假設檢驗的方法,由樣本觀測數據來推斷總體數量特徵。這種由樣本來推斷總體的方法就叫統計推斷法。統計推斷法已在統計研究的許多領域得到應用,除了最常見的總體指標推斷外,統計模型參數的估計和檢驗、統計預測中原時間序列的估計和檢驗等,也都屬於統計推斷的范疇,都存在著誤差和置信度的問題。在實踐中這是一種有效又經濟的方法,其應用范圍很廣泛,發展很快,統計推斷法已成為現代統計學的基本方法。
㈨ 統計分析中常用的有哪幾種「方法圖」
統計質量控制分析方法之一:排列圖法,利用排列圖尋找影響質量主次因素的一種有效方法。統計質量控制分析方法之二:統計調查表法,利用專門設計的統計表對質量數據進行收集、整理和粗略分析質量狀態的一種方法。統計質量控制分析方法之三:直方圖法,將收集到的質量數據進行分組整理,繪製成頻數分布直方圖,用以描述質量分布狀態的一種分析方法。統計質量控制分析方法之四:分層法,將調查收集的原始數據,根據不同的目的和要求,按某一性質進行分組、整理的分析方法。統計質量控制分析方法之五:因果分析圖法,利用因果分析圖來系統整理分析某個質量問題(結果)與其產生原因之間關系的有效工具。統計質量控制分析方法之六:控制圖,用途主要有兩個:過程分析,即分析生產過程是否穩定。過程式控制制,即控制生產過程質量狀態。統計質量控制分析方法之七:相關圖,在質量控制中它是用來顯示兩種質量數據之間關系的一種圖形。以上就是統計質量控制的幾種分析方法及用途,它不僅適用於質量控制,更可應用於一切管理過程。採用統計質量控制的這幾種方法可以幫助企業在質量控制上真正作到"事前"預防和控制。