❶ 控制系統分析與設計的編輯推薦
《控制系統分析與設計》密切結合工程實際,從應用角度全面系統論述控制系統的建模、分析、設計、實現和調試等問題。在介紹理論方法的同時,適當介紹工程實用方法,例如控制系統的飛升曲線建模方法、控制系統工程綜合方法等。理論深度適中,強調實際工程應用,尤其突出物理概念、基本理論與實際應用之間的有機聯系。
在傳統方法的基礎上,介紹控制系統的非線性補償、重復控制、滑模變結構控制、自抗擾控制等,以及伺服控制系統的干摩擦及其改善措施、傳緩陸動間隙對伺服系統的影響及其補償、機械諧振對伺服系統的影響及其補償等實際控制系統的典型問題及解決方法、控制系統的電磁兼容和可靠性等問題。
通過具有代表性的多個典型實例,介紹自動控制系統的構成原理、設計和分析方法。《控制系統分析與設計》所舉的工程槐兆實例具有典型性、代表性,兼顧傳統技術與新鉛哪租技術的應用,例如天線指向/跟蹤伺服系統(高精度系統)、火炮方位伺服系統(模擬系統+典型非線性)、飛行模擬伺服系統(數字系統)等。
❷ 控制系統分析與設計的目錄
第1章控制系統導論
1.1引言
1.2自動控制系統的分類
1.2.1開環控制、閉環控制和復合控制
1.2.2恆值控制、程序控制和伺服控制
1.2.3數字控制系統
1.3控制系統的組成
1.4控制系統分析與設計步驟
第2章控制系統的數學模型
2.1連續控制系統的數學模型
2.1.1控制系統的運動方程式
2.1.2非線性方程的線性化
2.1.3連續系統的傳遞函數
2.1.4控制系統的狀態空間方程
2.2離散控制系統的數學模型
2.2.1信號采樣與保持
2.2.2離散系統的數學描述
2.3控制系統的工程建模方法
2.3.1時域建模的飛升曲線法
2.3.2頻域建模方法
2.3.3相關分析建模方法
習題
第3章控制系統的穩定性與結構分析
3.1控制系統穩定性概念
3.1.1線性系統的穩定性--BIBO穩定性
3.1.2Lyapunov穩定性
3.2控制系統的穩定性分析
3.2.1Lyapunov第一法
3.2.2Lyapunov第二法--穩定性分析的直接法
3.2.3線性系統的Lyapunov穩定性分析
3.3線性連續系統的穩定性判據
3.3.1Routh穩定判據
3.3.2Hurwitz穩定判據
3.3.3Nyquist穩定判據
3.4控制系統的相對穩定性
3.4.1相對穩定性的定義
3.4.2穩定裕度的計算
3.5控制系統的魯棒穩定性
3.5.1魯棒性的基本概念
3.5.2參數不確定系統的魯棒穩定行嫌性
3.6線性離散系統的穩定性分析
3.7線性系統的結構分析--可控性和可觀測性
3.7.1線性系統的可控性
3.7.2線性系統的可觀測性
習題
第4章控制系統的綜合與校正
4.1控制系統的性能指標
4.1.1典型輸入信號
4.1.2控制系統的穩態性能和系統的型別
4.1.3控制系統的時域性能指標
4.1.4控制系統的閉環頻域指標
4.1.5控制系統的開環頻域指標
4.2基本校正方式和控制規律
4.2.1校正方式
4.2.2基本控制規律
4.2.3校正裝置
4.3串聯校正
4.3.1串聯超前校正
4.3.2串聯滯後校正
4.3.3串聯滯後?超前校正
4.4期望頻率特性校正法
4.4.1期望頻率特性設計
4.4.2常用期望頻率特性
4.4.3工程設計法
4.5反饋校正
4.6復合校正
4.7數字控制器設計
4.7.1數字PID控制實現及其改進措施
4.7.2數字控制器的連續設計方法
4.7.3數字控制器的離散設計方法
習題
第5章伺服系統的工程實現
5.1伺服系統組成及其分類
5.1.1伺服系統的組成
5.1.2伺服系統的分類
5.2伺服電動機
5.3伺服系統檢測與信號轉換
5.3.1伺服系統的位移檢測
5.3.2伺服系統的信號轉換電路
5.3.3自整角機/旋轉變壓器?數字轉換器(SDC?RDC)
5.3.4數字?自整角機/旋轉變壓器轉換器(DSC/DRC)
5.4伺服系統的穩態設計
5.4.1負載分析計算
5.4.2執行電動機選擇
5.4.3檢測裝置、信號轉換線路、放大裝置及電源設計與選擇
5.4.4利用銘牌數據和經驗公式推導伺服系統的傳遞函數
5.5伺服系統的電磁兼容性
5.5.1電磁干擾模型分析
5.5.2抑制電磁干擾的方檔改手法
5.5.3伺服系統電磁兼容設計
5.6伺服系統的可靠性
5.6.1可靠性特徵量
5.6.2伺服系統的可靠性設計
習題
第6章伺服系統的非線性控制
6.1伺服系統的干摩擦及其改善
6.1.1低速不平穩性
6.1.2減小低速跳動的措施
6.2傳動間隙對伺服系統的影響及其補償
6.2.1傳動間隙對伺服系統性能的影響
6.2.2消殲首除間隙影響的措施
6.3機械諧振對系統的影響及其補償
6.3.1傳動軸變形造成的機械諧振
6.3.2消除機械諧振的補償措施
6.4伺服系統的非線性補償
6.4.1非線性速度阻尼
6.4.2非線性積分器和非線性PI調節器
6.4.3自抗擾控制
6.4.4多模控制技術
6.5伺服系統的重復控制
6.5.1重復控制原理
6.5.2重復控制系統的穩定性
6.5.3重復控制器設計
6.6伺服系統的滑模變結構控制
6.6.1滑模變結構控制原理
6.6.2二階系統開關控制
6.6.3滑動模態
習題
第7章控制系統設計舉例
7.1永磁同步電機調速系統
7.1.1永磁同步電動機的結構
7.1.2永磁同步電機數學模型
7.1.3永磁同步電機矢量控制策略
7.1.4永磁同步電機調速系統設計
7.1.5基於TMS320LF2407ADSP的永磁同步電機調速系統
7.2星載天線伺服控制系統
7.2.1星載天線負載特性分析與伺服電機選擇
7.2.2星載天線伺服控制系統結構設計
7.2.3星載天線伺服系統控制器設計
7.2.4星載天線伺服系統的滑模變結構控制
7.3火炮伺服系統
7.3.1火炮伺服系統的基本組成
7.3.2火炮伺服系統設計
7.4飛行模擬頭位跟蹤視景伺服系統
7.4.1飛行模擬頭位跟蹤視景系統的結構
7.4.2飛行模擬伺服系統的原理以及硬體實現
7.4.3飛行模擬伺服系統設計
7.4.4控製程序設計
參考文獻
……
❸ 有哪些建立控制系統數學模型的方法
在控制系統的分析和設計中,首先要建立系統的數學模型.控制系統的數學模型是描述系統內部物理量(或變數)之間關系的數學表達式.在靜態條件下(即變數各階導數為零),描述變數之間關系的代數方程叫靜態數學模型;而描述變數各階導數之間關系的微分方程叫數學模型.如果已知輸入量及變數的初始條件,對微分方程求解就可以得到系統輸出量的表達式,並由此可對系統進行性能分析.因此,建立控制系統的數學模型是分析和設計控制系統的首要工作
建立控制系統數學模型的方法有分析法和實驗法兩種.分析法是對系統各部分的運動機理進行分析,根據它們所依據的物理規律或化學規律分別列寫相應的運動方程.例如,電學中有基爾霍夫定律,力學中有牛頓定律,熱力學中有熱力學定律等.實驗法是人為地給系統施加某種測試信號,記錄其輸出響應,並用適當的數學模型去逼近,這種方法稱為系統辨識.近幾年來,系統辨識已發展成一門獨立的學科分支,本章重點研究用分析法建立系統數學模型的方法.
在自動控制理論中,數學模型有多種形式.時域中常用的數學模型有微分方程、差分方程和狀態方程;復數域中有傳遞函數、結構圖;頻域中有頻率特性等.
❹ 在經典控制理論時期,分析和設計自動化控制系統的主要方法是什麼分別基於什麼樣的原理和思想方法
看看網路的解釋:
經典控制理論主要研究系統運動的穩定性、時間域和頻率域中系統的運動特性(見過渡過程、頻率響應)、控制系統的設計原理和校正方法(見控制系統校正方法)。經典控制理論包括線性控制理論、采樣控制理論、非線性控制理論(見非線性系統理論)三個部分。早期,這種控制理論常被稱為自動調節原理,隨著以狀態空間法為基礎和以最優控制理論為特徵的現代控制理論的形成(在1960年前後),開始廣為使用現在的名稱。
控制理論的形成遠比控制技術的應用要晚。古代,羅馬人家裡的水管系統中就已經應用按反饋原理構成的簡單水位控制裝置。中國北宋元初年(1086~1089)也已有了反饋調節裝置──水運儀象台。但是直到1787年瓦特離心式調速器在蒸汽機轉速控制上得到普遍應用,才開始出現研究控制理論的需要。
1868年,英國科學家J.C.麥克斯韋首先解釋了瓦特速度控制系統中出現的不穩定現象,指出振盪現象的出現同由系統導出的一個代數方程根的分布形態有密切的關系,開辟了用數學方法研究控制系統中運動現象的途徑。英國數學家E.J.勞思和德國數學家A.胡爾維茨推進了麥克斯韋的工作,分別在1875年和1895年獨立地建立了直接根據代數方程的系數判別系統穩定性的准則(見代數穩定判據)。
1932年,美國物理學家H.奈奎斯特運用復變函數理論的方法建立了根據頻率響應判斷反饋系統穩定性的准則(見奈奎斯特穩定判據)。這種方法比當時流行的基於微分方程的分析方法有更大的實用性,也更便於設計反饋控制系統。奈奎斯特的工作奠定了頻率響應法的基礎。隨後,H.W.波德和N.B.尼科爾斯等在30年代末和40年代進一步將頻率響應法加以發展,使之更為成熟,經典控制理論遂開始形成。
1948年,美國科學家W.R.埃文斯提出了名為根軌跡的分析方法,用於研究系統參數(如增益)對反饋控制系統的穩定性和運動特性的影響,並於1950年進一步應用於反饋控制系統的設計,構成了經典控制理論的另一核心方法──根軌跡法。
40年代末和50年代初,頻率響應法和根軌跡法被推廣用於研究采樣控制系統和簡單的非線性控制系統,標志著經典控制理論已經成熟。經典控制理論在理論上和應用上所獲得的廣泛成就,促使人們試圖把這些原理推廣到像生物控制機理、神經系統、經濟及社會過程等非常復雜的系統,其中美國數學家N.維納在1948年出版的《控制論》最為重要和影響最大。
經典控制理論在解決比較簡單的控制系統的分析和設計問題方面是很有效的,至今仍不失其實用價值。存在的局限性主要表現在只適用於單變數系統,且僅限於研究定常系統。
以頻率響應法和根軌跡法為核心的控制理論。[1]頻率響應理論對於分析,設計單變數系統來說是非常有效的工具。設計者只需根據系統的開環頻率特性,就能夠判斷閉環系統的穩定性和給出穩定裕量的信息,同時又能非常直觀地表示出系統的主要參數,即開環增益與閉環系統穩定性的關系。頻率響應法圓滿地解決了單變數系統的設計問題。1948年,伊萬斯(W. R. Evans)提出了控制系統分析和設計的根軌跡法。
❺ 在經典控制理論時期,分析和設計自動控制系統的主要方法是什麼分別基於什麼樣的原理和思想
經典基於傳遞函數的物理理解,就是把一套系統知嫌擾的各個部分變成數學模型,就是傳遞函數,搭旦一般採用時域,頻域分析。現代是基於更多的數學方法,主要研究狀態量,一般採用時域分者大析
❻ 控制系統分析與設計的介紹
《控制系統分析與設計》系統地介紹了控孫團旅制系統的構成、分析、設計則凳及調試方法。內容主要包括控制系統的組成和性能指標、控制系統或羨的建模方法、穩定性與結構分析、綜合與校正、伺服控制系統的靜態和動態設計、伺服控制系統的非線性控制、典型控制系統實例分析和設計等。
❼ 水塔水位的PLC控制系統的設計與分析
按鈕SB來模擬液位感測器,M1、M2為抽水電動機。
控制要求為:
❽ 對控制系統的基本要求和系統設計的方法有哪些方面
控制系統設計是一個很大的課題.從分類上來說有開環控制系統(如交通燈),閉環反饋控制系統(如溫度控制),有模擬控制系統,也有數字控制系統.它們的具體設計要求各有不同.但總體來說,一般控制系統要求
1)滿足控制精度和穩定性要求
2)滿足響應時間要求
3)有足夠的抗干擾和雜訊的能力(魯棒性)
4)容易實現,成本低
❾ 控制系統的原則設計包括有哪些
電氣原理圖設計 為滿足生產機械及工藝要求進行的電氣控制電路的設計 電氣工藝設計 為電氣控制裝置的製造,使用,運行,維修的需要進行的生產施工設計 第一節 電氣控制設計的原則和內容 一,電氣控制設計的原拍戚則 1)最大限度滿足生產機械和生產工藝對電氣控制的要求 2)在滿足要求的前提下,使控制系統簡單,經濟,合理,便於操作,維修方便,安全可靠 3)電器元件選用合理,正確,使系統能正常工作 4)為適應工藝的改進,設備能力應留有裕量 二,電氣控制設計的基本內容 1.電氣原理圖設計內容 1) 擬定電氣設計任務書 2)選擇電力拖動方案和控制方式 3)確定電動機的類型,型號,容量,轉速 4)設計電氣控制原理圖 5)選擇電器元件及清單 6)編寫設計計算說明書 2. 電氣工藝設計內容 1)設計電氣設備的總體配置,繪制總裝配圖和總接線圖 2)繪制各組件電器元件布置圖與安裝接線陵團圖,標明安裝方式,接線方式 3)編寫使用維護說明書 第二節 電力拖動方案的確定和電動機的選擇 一,電力拖動方案的確定 1,拖動方式的選擇 2,調速方案的選擇 3,電動機調速性質應與負載特性相適應 二,拖動電動機的選擇 (一)電動機選擇的基本原則 1)電動機的機械特性應滿足生產機械的要求,與負載的特性相適應 2)電動機的容量要得到充分的利用 3)電動機的結構形式要滿足機械設計的安裝要求,適合工作環境 4)在滿足設計要求前提下,優先採用三相非同步電動機 (二)根據生產機械調速要求選擇電動機 一般---三相籠型非同步電動機,雙速電機 調速,起動轉矩大---三相籠型非同步電動機 調速高---直流電動機,變頻調速交流電動機 (三)電動機結構形式的選擇 根據工作性質,安裝方式,工作環境選擇 (四)電動機額定電壓的選擇 (五)電動機額定轉速的選擇 (六)電動機容量的選擇 1,分析計演算法: 此外,還可通過對長期運行的同類生產機械的電動機容量進行調查,並對機械主要參數,工作條件進行類比,然後再確定電動機的容量. 第三節 電氣控制電路設計的一股要求 一,電氣控制應最大限度地滿足生產機械加工工藝的要求 設計前,應對生產機械工作性能,結構特點,運動情況,加工工藝過程及加工情況有充 分的了解,並在此基礎上設計控制方案,考慮控制方式,起動,制動,反向和調速的要求, 安置必要的聯鎖與保護,確保滿足生產機械加工工藝的要求. 二,對控制電路電流,電壓的要求 應盡量減少控制電路中的電流,電壓種類,控制電壓應選擇標准電壓等級.電氣控制電 各常用的電壓等級如表10-2所示. 三,控制電路力求簡單,經濟 1.盡量縮短連接導線的長度和導線數量 設計控制電路時,應考慮各電器元件的安裝 立置,盡可能地減少連接導線的數量,縮短連接導線的長度.如圖10-l. 2.盡量減少電器元件的品種,數量和規格 同一用途的器件盡可能選用同品牌,型號的產品,並且電器數量減少到最低限度. 3.盡量減少電器元件觸頭的數目.在控制電路中,盡量減少觸頭是為了提高電路運行 的可靠性.例如圖10-2a所示. 4.盡量減少通電電器的數目,以利節能與延長電器元件壽命,減少故障.如圖10-3a所示. 四,確保控制電路工作的安全性和可靠性 1.正確連接電器的線圈 在交流控制電路中,同時動作的兩個電器線圈不能串聯,兩個電磁線圈需要同時吸合時其線圈應並聯連接,如圖10-4b所示. 在直流控制電路中,兩電感值相襲汪陵差懸殊的直流電壓線圈不能並聯連接. 2正確連接電器元件的觸頭 設計時,應使分布在電路中不同位置的同一電器觸頭接到電源的同一相上,以避免在電器觸頭上引起短路故障. 3防止寄生電路 在控制電路的動作過程中.意外接通的電路叫寄生電路. 4.在控制電路中控制觸頭應合理布置. 5.在設計控制電路中應考慮繼電器觸頭的接通與分斷能力. 6,避免發生觸頭"競爭","冒險"現象 競爭:當控制電路狀態發生變換時,常伴隨電路中的電器元件的觸頭狀態發生變換.由於電器元件總有一定的固有動作時間,對於一個時序電路來說,往往發生不按時序動作的情況,觸頭爭先吸合,就會得到幾個不同的輸出狀態,這種現象稱為電路的"競爭". 冒險:對於開關電路,由於電器元件的釋放延時作用,也會出現開關元件不按要求的邏輯功能輸出,這種現象稱為"冒險". 7.採用電氣聯鎖與機械聯鎖的雙重聯鎖. 五,具有完善的保護環節 電氣控制電路應具有完善的保護環節,常用的有漏電保護,短路,過載,過電流,過電壓,欠電壓與零電壓,弱磁,聯鎖與限位保護等. 六,要考慮操作,維修與調試的方便 第四節 電氣控制電路設計的方法與步驟 一,電氣控制電路設計方法簡介 設計電氣控制電路的方法有兩種,一種是分析設計法,另一種是邏輯設計法. 分析設計法(經驗設計法):根據生產工藝的要求選擇一些成熟的典型基本環節來實現這些基本要求,而後再逐步完善其功能,並適當配 置聯鎖和保護等環節,使其組合成一個整體,成為滿足控制要求的完整電路. 邏輯設計法:利用邏輯代數這一數學工具設計電氣控制電路. 在繼電接觸器控制電路中,把表示觸頭狀態的邏輯變數稱為輸人邏輯變數,把表示繼電 器接觸器線圈等受控元件的邏輯變數稱為輸出邏輯變數.輸人,輸出邏輯變數之間的相互關 系稱為邏輯函數關系,這種相互關系表明了電氣控制電路的結構.所以,根據控制要求,將 這些邏輯變數關系寫出其邏輯函數關系式,再運用邏輯函數基本公式和運算規律對邏輯函數 式進行化簡,然後根據化簡了的邏輯關系式畫出相應的電路結構圖,最後再作進一步的檢查 和優化,以期獲得較為完善的設計方案. 二,分析設計法的基本步驟 分析設計法設計電氣控制電路的基本步驟是: l)按工藝要求提出的起動,制動,反向和調速等要求設計主電路. 2)根據所設計出的主電路,設計控制電路的基本環節,即滿足設計要求的起動,制動, 反向和調速等的基本控制環節. 3)根據各部分運動要求的配合關系及聯鎖關系,確定控制參量並設計控制電路的特殊 環節. 4)分析電路工作中可能出現的故障,加入必要的保護環節. 5)綜合審查,仔細檢查電氣控制電路動作是否正確 關鍵環節可做必要實驗,進一步 3.設計控制電路的特殊環節 第五節 常用控制電器的選擇 一,接觸器的選擇 一般按下列步驟進行: 1.接觸器種類的選擇:根據接觸器控制的負載性質來相應選擇直流接觸器還是交流接觸器;一般場合選用電磁式接觸器,對頻繁操作的帶交流負載的場合,可選用帶直流電磁線圈的交流按觸器. 2.接觸器使用類別的選擇:根據接觸器所控制負載的工作任務來選擇相應使用類別的接觸器.如負載是一般任務則選用AC—3使用類別;負載為重任務則應選用AC-4類別,如果負載為一般任務與重任務混合時,則可根據實際情況選用AC—3或AC-4類接觸器,如選用AC—3類時,應降級使用. 3.接觸器額定電壓的確定: 接觸器主觸頭的額定電壓應根據主觸頭所控制負載電路的額定電壓來確定. 4.接觸器額定電流的選擇 一般情況下,接觸器主觸頭的額定電流應大於等於負載或電動機的額定電流,計算公式為 式中I.——接觸器主觸頭額定電流(A); H ——經驗系數,一般取l~1.4; P.——被控電動機額定功率(kw); U.——被控電動機額定線電壓(V). 當接觸器用於電動機頻繁起動,制動或正反轉的場合,一般可將其額定電流降一個等級來選用. 5.接觸器線圈額定電壓的確定: 接觸器線圈的額定電壓應等於控制電路的電源電壓.為保證安全,一般接觸器線圈選用110V,127V,並由控制變壓器供電.但如果控制電路比較簡單,所用接觸器的數量較少時,為省去控制變壓器,可選用380V,220V電壓. 6.接觸器觸頭數目: 在三相交流系統中一般選用三極接觸器,即三對常開主觸頭,當需要同時控制中勝線時,則選用四極交流接觸器.在單相交流和直流系統中則常用兩極或三極並聯接觸器.交流接觸器通常有三對常開主觸頭和四至六對輔助觸頭,直流接觸器通常有兩對常開主觸頭和四對輔助觸頭. 7.接觸器額定操作頻率 交,直流接觸器額定操作頻率一般有600次/h,1200次/h等幾種,一般說來,額定電流越大,則操作頻率越低,可根據實際需要選擇. 二,電磁式繼電器的選擇 應根據繼電器的功能特點,適用性,使用環境,工作制,額定工作電壓及額定工作電流來選擇. 1.電磁式電壓繼電器的選擇 根據在控制電路中的作用,電壓繼電器有過電壓繼電器和欠電壓繼電器兩種類型. 表10-3列出了電磁式繼電器的類型與用途. 交流過電壓繼電器選擇的主要參數是額定電壓和動作電壓,其動作電壓按系統額定電壓的1.l-1.2倍整定. 交流欠電壓繼電器常用一般交流電磁式電壓繼電器,其選用只要滿足一般要求即可,對釋放電壓值無特殊要求.而直流欠電壓繼電器吸合電壓按其額定電壓的0.3-0.5倍整定,釋放電壓按其額定電壓的0.07-0.2倍整定. 2.電磁式電流繼電器的選擇 根據負載所要求的保護作用,分為過電流繼電器和欠電流繼電器兩種類型. 過電流繼電器:交流過電流繼電器,直流過電流繼電器. 欠電流繼電器:只有直流欠電流繼電器,用於直流電動機及電磁吸盤的弱磁保護. 過電流繼電器的主要參數是額定電流和動作電流,其額定電流應大於或等於被保護電動機的額定電流;動作電流應根據電動機工作情況按其起動電流的1.回一1.3倍整定.一般繞線型轉子非同步電動機的起動電流按2.5倍額定電流考慮,籠型非同步電動機的起動電流按4-7倍額定電流考慮.直流過電流繼電器動作電流接直流電動機額定電流的1.1-3.0倍整定. 欠電流繼電器選擇的主要參數是額定電流和釋放電流,其額定電流應大於或等於直流電動機及電磁吸盤的額定勵磁電流;釋放電流整定值應低於勵磁電路正常工作范圍內可能出現的最小勵磁電流,一般釋放電流按最小勵磁電流的0.85倍整定. 3.電磁式中間繼電器的選擇 應使線圈的電流種類和電壓等級與控制電路一致,同時,觸頭數量,種類及容量應滿足控制電路要求. 三,熱繼電器的選擇 熱繼電器主要用於電動機的過載保護,因此應根據電動機的形式,工作環境,起動情況,負載情況,工作制及電動機允許過載能力等綜合考慮. 1.熱繼電器結構形式的選擇 對於星形聯結的電動機,使用一般不帶斷相保護的三相熱繼電器能反映一相斷線後的過載,對電動機斷相運行能起保護作用. 對於三角形聯結的電動機,則應選用帶斷相保護的三相結構熱繼電器. 2.熱繼電器額定電流的選擇 原則上按被保護電動機的額定電流選取熱繼電器.對於長期正常工作的電動機,熱繼電器中熱元件的整定電流值為電動機額定電流的0.95-1.05倍;對於過載能力較差的電動機,熱繼電器熱元件整定電流值為電動機額定電流的0.6一0.8倍. 對於不頻繁起動的電動機,應保證熱繼電器在電動機起動過程中不產生誤動作,若電動機起動電流不超過其額定電流的6倍,並且起動時間不超過6S,可按電動機的額定電流來選擇熱繼電器. 對於重復短時工作制的電動機,首先要確定熱繼電器的允許操作頻率,然後再根據電動機的起動時間,起動電流和通電持續率來選擇. 四,時間繼電器的選擇 1)電流種類和電壓等級:電磁阻尼式和空氣阻尼式時間繼電器,其線圈的電流種類和電壓等級應與控制電路的相同;電動機或與晶體管式時間繼電器,其電源的電流種類和電壓等級應與控制電路的相同. 2)延時方式:根據控制電路的要求來選擇延時方式,即通電延時型和斷電延時型. 3)觸頭形式和數量:根據控制電路要求來選擇觸頭形式(延時閉合型或延時斷開型)及觸頭數量. 4)延時精度:電磁阻尼式時間繼電器適用於延時精度要求不高的場合,電動機式或晶體管式時間繼電器適用於延時精度要求高的場合. 5)延時時間:應滿足電氣控制電路的要求. 6)操作頻率:時間繼電器的操作頻率不宜過高,否則會影響其使用壽命,甚至會導致延時動作失調. 五,熔斷器的選擇 1.一般熔斷器的選擇:根據熔斷器類型,額定電壓,額定電流及熔體的額定電流來選擇. (1)熔斷器類型:熔斷器類型應根據電路要求,使用場合及安裝條件來選擇,其保護特性應與被保護對象的過載能力相匹配.對於容量較小的照明和電動機,一般是考慮它們的過載保護,可選用熔體熔化系數小的熔斷器,對於容量較大的照明和電動機,除過載保護外,還應考慮短路時的分斷短路電流能力,若短路電流較小時,可選用低分斷能力的熔斷器,若短路電流較大時,可選用高分斷能力的RLI系列熔斷器,若短路電流相當大時,可選用有限流作用的Rh及RT12系列熔斷器. (2)熔斷器額定電壓和額定電流:熔斷器的額定電壓應大於或等於線路的工作電壓,額定電流應大於或等於所裝熔體的額定電流. (3)熔斷器熔體額定電流 1)對於照明線路或電熱設備等沒有沖擊電流的負載,應選擇熔體的額定電流等於或稍 大於負載的額定電流,即 IRN≥IN 式中IRN——熔體額定電流(A); IN——負載額定電流(A). 2)對於長期工作的單台電動機,要考慮電動機起動時不應熔斷,即 IRN≥(1.5~2.5)IN 輕載時系數取1.5,重載時系數取2.5. 3)對於頻繁起動的單台電動機,在頻繁起動時,熔體不應熔斷,即 IRN≥(3~3.5)IN 4)對於多台電動機長期共用一個熔斷器,熔體額定電流為 IRN≥(1.5~2.5)INMmax+∑INM 式中INMmax——容量最大電動機的額定電流(A); ∑INM——除容量最大電動機外,其餘電動機額定電流之和(A). (4)適用於配電系統的熔斷器:在配電系統多級熔斷器保護中,為防止越級熔斷,使上,下級熔斷器間有良好的配合,選用熔斷器時應使上一級(干線)熔斷器的熔體額定電流比下一級(支線)的熔體額定電流大1-2個級差. 2.快速熔斷器的選擇 (l)快速熔斷器的額定電壓:快速熔斷器額定電壓應大於電源電壓,且小於晶閘管的反向峰值電壓U.,因為快速熔斷器分斷電流的瞬間,最高電弧電壓可達電源電壓的1.5-2倍.因此,整流二極體或晶閘管的反向峰值電壓必須大於此電壓值才能安全工作.即 UF≥KI URE 式中UF-一硅整流元件或晶閘管的反向峰值電壓(V); URE——快速熔斷器額定電壓(V); KI——安全系數,一般取1,5-2. (2)快速熔斷器的額定電流:快速熔斷器的額定電流是以有效值表示的,而整流M極管和晶閘管的額定電流是用平均值表示的.當快速熔斷器接人交流側,熔體的額定電流為 IRN≥KI IZmax 式中IZmax——可能使用的最大整流電流(A); KI——與整流電路形式及導電情況有關的系數,若保護整流M極管時,KI按表10-4 取值,若保護晶閘管時,KI按表10-5取值. 當快速熔斷器接入整流橋臂時,熔體額定電流為 IRN≥1.5IGN 式中IGN——硅整流元件或晶閘管的額定電流(A). 六,開關電器的選擇 (一)刀開關的選擇 刀開關主要根據使用的場合,電源種類,電壓等級,負載容量及所需極數來選擇. (1)根據刀開關在線路中的作用和安裝位置選擇其結構形式.若用於隔斷電源時,選用無滅弧罩的產品;若用於分斷負載時,則應選用有滅弧罩,且用杠桿來操作的產品. (2)根據線路電壓和電流來選擇.刀開關的額定電壓應大於或等於所在線路的額定電壓;刀開關額定電流應大於負載的額定電流,當負載為非同步電動機時,其額定電流應取為電動機額定電流的1.5倍以上. (3)刀開關的極數應與所在電路的極數相同. (二)組合開關的選擇 組合開關主要根據電源種類,電壓等級,所需觸頭數及電動機容量來選擇.選擇時應掌握以下原則: (1)組合開關的通斷能力並不是很高,因此不能用它來分斷故障電流.對用於控制電動機可逆運行的組合開關,必須在電動機完全停止轉動後才允許反方向接通. (2)組合開關接線方式多種,使用時應根據需要正確選擇相應產品. (3)組合開關的操作頻率不宜太高,一般不宜超過300次/h,所控制負載的功率因數也不能低於規定值,否則組合開關要降低容量使用. (4)組合開關本身不具備過載,短路和欠電壓保護,如需這些保護,必須另設其他保護電器. (三)低壓斷路器的選擇 低壓斷路器主要根據保護特性要求,分斷能力,電網電壓類型及等級,負載電流,操作頻率等方面進行選擇. (1)額定電壓和額定電流:低壓斷路器的額定電壓和額定電流應大於或等於線路的額定電壓和額定電流. (2)熱脫扣器:熱脫扣器整定電流應與被控制電動機或負載的額定電流一致. (3)過電流脫扣器:過電流脫扣器瞬時動作整定電流由下式確定 IZ≥KIS 式中IZ——瞬時動作整定電流(A); Is——線路中的尖峰電流.若負載是電動機,則Is為起動電流(A); K考慮整定誤差和起動電流允許變化的安全系數.當動作時間大於20ms時,取 K=1.35;當動作時間小於 20ms時,取 K=1.7. (4)欠電壓脫扣器:欠電壓脫扣器的額定電壓應等於線路的額定電壓. (四)電源開關聯鎖機構 電源開關聯鎖機構與相應的斷路器和組合開關配套使用,用於接通電源,斷開電源和櫃 門開關聯鎖,以達到在切斷電源後才能打開門,將門關閉好後才能接通電源的效果,實現安 全保護. 七,控制變壓器的選擇 控制變壓器用於降低控制電路或輔助電路的電壓,以保證控制電路的安全可靠.控制變壓器主要根據一次和二次電壓等級及所需要的變壓器容量來選擇. (1)控制變壓器一,二次電壓應與交流電源電壓,控制電路電壓與輔助電路電壓相符合. (2)控制變壓器容量按下列兩種情況計算,依計算容量大者決定控制變壓器的容量. l)變壓器長期運行時,最大工作負載時變壓器的容量應大於或等於最大工作負載所需要的功率,計算公式為 ST≥KT ∑PXC 式中ST——控制變壓器所需容量(VA); ∑PXC——控制電路最大負載時工作的電器所需的總功率,其中PXC為電磁器件的吸持功 率(W); KT一一一控制變壓器容量儲備系數,一般取1.1-1.25. 2)控制變壓器容量應使已吸合的電器在起動其他電器時仍能保持吸會狀態,而起動電器也能可靠地吸合,其計算公式為 ST≥0.6 ∑PXC +1.5∑Pst 式中 ∑Pst_同時起動的電器總吸持功率(W). 第六節 電氣控制的施工設計與施工 一,電氣設備總體配置設計 組件的劃分原則是: l)將功能類似的元件組成在一起,構成控制面板組件,電氣控制盤組件,電源組件等. 2)將接線關系密切的電器元件置於在同一組件中,以減少組件之間的連線數量. 3)強電與弱電控制相分離,以減少干擾. 4)為求整齊美觀,將外形尺寸相同,重量相近的電器元件組合在一起. 5)為便於檢查與調試,將需經常調節,維護和易損元件組合在一起. 電氣設備的各部分及組件之間的接線方式通常有: l)電器控制盤,機床電器的進出線一般採用接線端子. 2)被控制設備與電氣箱之間為便於拆裝,搬運,盡可能採用多孔接插件. 3)印刷電路板與弱電控制組件之間宜採用各種類型接插件. 總體配置設計是以電氣控制的總裝配圖與總接線圖的形式表達出來的,圖中是用示意方式反映各部分主要組件的位置和各部分的接線關系,走線方式及使用管線要求.總體設計要使整個系統集中,緊湊;要考慮發熱量高和雜訊振動大的電氣部件,使其離開操作者一定距離;電源緊急控制開關應安放在方便且明顯的位置. 二,電氣元器件布置圖的設計 電氣元器件布置圖是指將電氣元器件按一定原則組合的安裝位置圖.電氣元器件布置的依據是各部件的原理圖,同一組件中的電器元件的布置應按國家標准執行. 電櫃內的電器可按下述原則布置: l)體積大或較重的電器應置於控制櫃下方. 2)發熱元件安裝在櫃的上方,並將發熱元件與感溫元件隔開. 3)強電弱電應分開,弱電部分應加屏蔽隔離,以防強電及外界的干擾. 4)電器的布置應考慮整齊,美觀,對稱. 5)電器元器件間應留有一定間距,以利布線,接線,維修和調整操作. 6)接線座的布置:用於相鄰櫃間連接用的接線座應布置在櫃的兩側;用於與櫃外電氣 元件連接的接線座應布置在櫃的下部,且不得低於200mrn. 一般通過實物排列來確定各電器元件的位置,進而繪制出控制櫃的電器布置圖.布置圖 是根據電器元件的外形尺寸按比例繪制,並標明各元件間距尺寸,同時還要標明進出線的數 量和導線規格,選擇適當的接線端子板和接插件並在其上標明接線號. 三,電氣控制裝置接線圖的繪制 根據電氣控制電路圖和電氣元器件布置圖來繪制電氣控制裝置的接線圖.接線圖應按以 下原則來繪制: 1)接線圖的繪制應符合GB6988.3—1997《電氣技術用文件的編制 第3部分:接線圖 和接線表》中的規定. 2)電氣元器件相對位置與實際安裝相對位置一致. 3)接線圖中同一電器元件中各帶電部件,如線圈,觸頭等的繪制採用集中表示法,且 在一個細實線方框內. 4)所有電器元件的文字元號及其接線端鈕的線號標注均與電氣控制電路圖完全相符. 5)電氣接線圖一律採用細實線繪制,應清楚表明各電器元件的接線關系和接線去向,其連接關系應與控制電路圖完全相符.連接導線的走線方式有板前走線與板後走線兩種,一般採用板前走線.對於簡單電氣控制裝置,電器元件數量不多,接線關系較簡單,可在接線圖中直接畫出元件之間的連線.對於復雜的電氣裝置,電器元件數量多,接線較復雜時,一般採用走線槽走線,此時,只要在各電器元件上標出接線號,不必畫出各元件之間的連接線. 6)接線圖中應標明連接導線的型號,規格,截面積及顏色. 7)進出控制裝置的導線,除大截面動力電路導線外,都應經過接線端子板.端子板上 各端鈕按接線號順序排列,並將動力線,交流控制線,直流控制線,信號指示線分類排開. 四,電力裝備的施工 (一)電氣控制櫃內的配線施工 1)不同性質與作用的電路選用不同顏色導線:交流或直流動力電路用黑色;交流控制 電路用紅色;直流控制電路用藍色;聯鎖控制電路用桔黃色或黃色;與保護導線連接的電路 用白色;保護導線用黃綠雙色;動力電路中的中線用淺藍色;備用線用與備用對象電路導線 顏色一致. 弱電電路可採用不同顏色的花線,以區別不同電路,顏色自由選擇. 2)所有導線,從一個接線端到另一個接線端必須是連續的,中間不許有接頭. 3)控制櫃常用配線方式有板前配線,板後交叉配線與行線槽配線,視控制櫃具體情況 而定. (二)電櫃外部配線 丨)所用導線皆為中間無接頭的絕緣多股硬導線. 2)電櫃外部的全部導線(除有適當保護的電纜線外)一律都要安放在導線通道內,使 其有適當的機械保護,具有防水,防鐵屑,防塵作用. 3)導線通道應有一定裕量,若用鋼管,其管壁厚度應大於1——;若用其他材料,其壁 厚應具有上述鋼管相應的強度. 4)所有穿管導線,在其兩端頭必須標明線號,以便查找和維修. 5)穿行在同一保護管路中的導線束應加人備用導線,其根數按表10-6的規定配置. (三)導線截面積的選用 導線截面積應按正常工作條件下流過的最大穩定電流來選擇,並考慮環境條件.表107 列出了機床用導線的載流容量,這些數值為正常工作條件下的最大穩定電流.另外還應考慮 電動機的起動,電磁線圈吸合及其他電流峰值引起的電壓降. 五,檢查,調整與試運行 主要步驟: 1.檢查接線圖:在接線前,根據電氣控制電路圖即原理圖,仔細檢查接線圖是否准確 無誤,特別要注意線路標號與接線端子板觸點標號是否一致. 2.檢查電器元件 對照電器元件明細表,逐個檢查所裝電器元件的型號,規格是否相 符,產品是否完好無損,特別要注意線圈額定電壓是否與工作電壓相符,電器元件觸頭數是 否夠用等. 3.檢查接線是否正確 對照電氣原理圖和電氣接線圖認真檢查接線是否正確.為判斷 連接導線是否斷線或接觸是否良好,可在斷電情況下藉助萬用表上的歐姆檔進行檢測. 4.進行絕緣試驗 為確保絕緣可靠,必須進行絕緣試驗.試驗包括將電容器及線圈短 接;將隔離變壓器二次側短路後接地;對於主電路及與主電路相連接的輔助電路,應載入 2.skV的正弦電壓有效值歷時1分鍾,試驗其能否承受;不與主電路相連接的輔助電路,應 在載入2倍額定電壓的基礎上再加 IkV,且歷時 1分鍾,如不被擊穿方為合格. 5.檢查,調整電路動作的正確性 在上述檢查通過後,就可通電檢查電路動作情況. 通電檢查可按控制環節一部分一部分地進行.注意觀察各電器的動作順序是否正確,指示裝 置指示是否正常.在各部分電路工作完成正確的基礎上才可進行整個電路的系統檢查.在這 個過程中常伴有一些電器元件的調整,如時間繼電器,行程開關等.這時,往往需與機修鉗 工,操作人員協同進行,直至全部符合工藝和設計要求,這時控制系統的設計與安裝工作才 算全面完成.
❿ PLC控制系統設計的一般步驟是什麼
設計PLC應用系統時,首先是進行PLC應用系統的功能設計,即根據被控對象的毀含碼功能和工藝要求,明確系統必須要做的工作和因此必備的條件。然後是進行PLC應用系統的功能分析,即通過分析系統功能,提出PLC控制系統的結構形式,控制信號的種類、數量,系統的規模、布局。最後根據系統分析的結果,具體的確定PLC的機型和系統的具體配置。
PLC控制系統設計可以按以下步驟進行。
1.熟悉被控對象,制定控制方案 分析被控對象的工藝過程及工作特點,了解被控對象機、電、液之間的配合,確定被控對象對
PLC控制系統的控制要求。
2.確定I/O設備
根據系統的控制要求,確定用戶所需的輸入(如按鈕、行程開關、選擇開關等)和輸出設備(如接觸器、電磁閥、信號指示燈等)由此確定PLC的I/O點數。
3.選擇PLC 選擇時主要包括PLC機型、容量、I/O模塊、電源的選擇。
4.分配PLC的I/O地址
根據生產設備現場需要,確定控制按鈕,選擇開關、接觸器、電磁閥、信號指示燈等各種輸入輸出設備的型號、規格、數量;根據所選的PLC的型號列出輸入/輸出設備與PLC輸入輸出端子的對照表,以便繪制PLC外部I/O接線圖和編製程序。
5.設計軟體及硬體進行PLC程序設計,進行控制櫃(台)等硬體的設計及現場施工。由於程序與硬體設計可同時進行,因此,PLC控制系統的設計周期可大老吵大縮短,而對於繼電器系統必須先設計出全部的電氣控制線路後才能進行施工設計。
6.聯機調試
聯機調試是指將模擬調試通過的程序進行在線統調。開始時,先不帶上輸出設備(接觸器線圈、信號指示燈等負載)進行調試。利用編程器的監控功能,采分段調試的方法進行。各部分都調試正常後,纖哪再帶上實際負載運行。如不符合要求,則對硬體和程序作調整。通常只需修改部分程序即可,全部調試完畢後,交付試運行。經過一段時間運行,如果工作正常、程序不需要修改則應將程序固化到EPROM中,以防程序丟失。
7.整理技術文件 包括設計說明書、電氣安裝圖、電氣元件明細表及使用說明書等。