得利特(北京)科技有限公司為您解答:油品顆粒度分析的方法主要有光學法、電容法、電磁法和顯微圖像分析法。其中,光學檢測法因其靈敏度高、檢測速度快和顆粒形狀分析能力強,被廣泛應用於微小顆粒的計數檢測。光阻法是光學檢測方法中廣泛檢測和發展的一種顆粒計數測量方法。國內外許多知名儀器製造商已經推出了基於光阻法原理的液體顆粒計數儀器。光散射法也是兩相流中顆粒物質檢測的常用方法之一。例如,光散射法用於測量空氣和油中的顆粒等。與光阻法對光源光束直徑和樣品池大小的嚴格要求相比,光散射法對光束直徑的要求要低得多,其測量區域被定義為柔性的,更便於在線測量。
B. 粒度分析儀測量步驟
1.礫岩的粒度分析方法
礫岩的粒度分析主要在野外進行,一般採用篩析和直接測量兩種方法。對於膠結較弱、礫石層鬆散的礫石,用孔徑為10mm和1mm的篩子過篩,小於1mm的基質和水泥可帶回室內進行細分;若0~1mm的細礫石含量較大且差異較大,則應採用篩析法進行細分。10mm以上的碎石一般在現場直接用直尺測量,然後將各粒徑的碎石分別稱重,記錄在粒徑分析表中。在取樣過程中,要選擇有代表性的取樣地點,樣品質量不低於25~30公斤,否則誤差會相當大。對於膠結作用強的礫岩,可在風化帶上測量粒度;或者把樣品帶回房間,先水泥化,分離礫石,再測粒徑。
2.砂岩和粉砂岩的粒度分析方法
砂岩和粉砂岩的粒度分析常採用篩析法、沉積速率法和薄片法,常用的沉積速率法有Azni法、Sabanin法和Robinson法等。篩析法和沉降速度法適用於未固結的鬆散岩石,如粗碎屑岩,一般只用篩析法;而中細碎屑岩往往含有較多的粉粒和粘粒,所以沉積速率法往往與篩析法結合使用。薄片法主要用於加固堅硬岩石。一般來說,篩分法適用於大於0.25mm或大於0.1mm的顆粒,沉降法適用於小於0.25mm的顆粒。
3.粒度分類
一般採用木質迎風標准,這是一種以毫米為單位的分級方案。後來,Querubin(1934)提出了對數轉換(表3-1),稱為φ值:
沉積學原理
其中d是顆粒直徑。
表3-1分級標准對照表
C. 納米材料粒度測試方法大全
納米材料是指三維空間尺寸中至少有一維處於納米數量級 (1~100 nm),或由納米結構單元組成的具有特殊性質的材料,被譽為「21世紀最重要的戰略性高技術材料之一」。當材料的粒度大小達到納米尺度時,將具有傳統微米級尺度材料所不具備的小尺寸效應、量子尺寸效應、表面效應等諸多特性,這些特異效應將為新材料的開發應用提供嶄新思路。
目前,納米材料已成為材料研發以及產業化最基本的構成部分,其中納米材料的粒度則是其最重要的表徵參數之一。本文根據不同的測試原理闡述了8種納米材料粒度測試方法,並分析了不同粒度測試方法的優缺點及適用范圍。
1.電子顯微鏡法
電子顯微鏡法是對納米材料尺寸、形貌、表面結構和微區化學成分研究最常用的方法, 一般包括掃描電子顯微鏡法(SEM) 和透射電子顯微鏡法(TEM)。對於很小的顆粒粒徑, 特別是僅由幾個原子組成的團簇,採用掃描隧道電鏡進行測量。計算電鏡所測量的粒度主要採用交叉法、最大交叉長度平均值法、粒徑分布圖法等。
優點: 該方法是一種顆粒度觀測的絕對方法, 因而具有可靠性和直觀性。
缺點: 測量結果缺乏整體統計性;滴樣前必須做超聲波分散;對一些不耐強電子束轟擊的納米顆粒樣品較難得到准確的結果。
2.激光粒度分析法
激光粒度分析法是基於Fraunhofer衍射和Mie氏散射理論,根據激光照射到顆粒後,顆粒能使激光產生衍射或散射的現象來測試粒度分布的。因此相應的激光粒度分析儀分為激光衍射式和激光動態散射式兩類。一般衍射式粒度儀適於對粒度在5μm以上的樣品分析,而動態激光散射儀則對粒度在5μm以下的納米、亞微米顆粒樣品分析較為准確。所以納米粒子的測量一般採用動態激光散射儀。
優點: 樣品用量少、自動化程度高、重復性好, 可在線分析等。
缺點: 不能分析高濃度的粒度及粒度分布,分析過程中需要稀釋,從而帶來一定誤差。
3.動態光散射法
動態光散射也稱光子相關光譜,是通過測量樣品散射光強度的起伏變化得出樣品的平均粒徑及粒徑分布。液體中納米粒子以布朗運動為主,其運動速度取決於粒徑、溫度和黏度系數等因素。在恆定溫度和黏度條件下, 通過光子相關譜法測定顆粒的擴散系數就可獲得顆粒的粒度分布,其適用於工業化產品粒徑的檢測,測量粒徑范圍為1nm~5μm的懸浮液。
優點: 速度快,可獲得精確的粒徑分布。
缺點: 結果受樣品的粒度大小以及分布影響較大, 只適用於測量粒度分布較窄的顆粒樣品;測試中應不發生明顯的團聚和快速沉降現象。
4.X射線衍射線寬法(XRD)
XRD測量納米材料晶粒大小的原理是當材料晶粒的尺寸為納米尺度時,其衍射峰型發生相應的寬化,通過對寬化的峰型進行測定並利用Scherrer公式計算得到不同晶面的晶粒尺寸。對於具體的晶粒而言, 衍射hkl的面間距dhkl和晶面層數N的乘積就是晶粒在垂直於此晶面方向上的粒度Dhkl。試樣中晶粒大小可採用Scherrer公式進行計算:
式中:λ-X射線波長;θ-布拉格角 (半衍射角) ;βhkl-衍射hkl的半峰寬。
優點: 可用於未知物的成分鑒定。
缺點: 靈敏度較低;定量分析的准確度不高;測得的晶粒大小不能判斷晶粒之間是否發生緊密的團聚;需要注意樣品中不能存在微觀應力。
5.X射線小角散射法 (SAXS)
當X射線照到材料上時,如果材料內部存在納米尺寸的密度不均勻區域,則會在入射X射線束的周圍2°~5°的小角度范圍內出現散射X射線。當材料的晶粒尺寸越細時,中心散射就越漫散,且這種現象與材料的晶粒內部結構無關。SAXS法通過測定中心的散射圖譜就可以計算出材料的粒徑分布。SAXS可用於納米級尺度的各種金屬、無機非金屬、有機聚合物粉末以及生物大分子、膠體溶液、磁性液體等顆粒尺寸分布的測定;也可對各種材料中的納米級孔洞、偏聚區、析出相等的尺寸進行分析研究。
優點: 操作簡單;對於單一材質的球形粉末, 該方法測量粒度有著很好的准確性。
缺點: 不能有效區分來自顆粒或微孔的散射,且對於密集的散射體系,會發生顆粒散射之間的干涉效應,導致測量結果有所偏低。
6.X射線光電子能譜法(XPS)
XPS法以X射線作為激發源,基於納米材料表面被激發出來的電子所具有的特徵能量分布(能譜)而對其表面元素進行分析,也稱為化學分析光電子能譜(ESCA)。由於原子在某一特定軌道的結合能依賴於原子周圍的化學環境,因而從X射線光電子能譜圖指紋特徵可進行除氫、氦外的各種元素的定性分析和半定量分析。
優點: 絕對靈敏度很高,在分析時所需的樣品量很少。
缺點: 但相對靈敏度不高, 且對液體樣品分析比較麻煩;影響X射線定量分析准確性的因素相當復雜。
7.掃描探針顯微鏡法(SPM)
SPM法是利用測量探針與樣品表面相互作用所產生的信號, 在納米級或原子級水平研究物質表面的原子和分子的幾何結構及相關的物理、化學性質的分析技術,尤以原子力顯微鏡 (AFM)為代表, 其不僅能直接觀測納米材料表面的形貌和結構, 還可對物質表面進行可控的局部加工。
優點: 在納米材料測量和表徵方面具有獨特性優勢。
缺點: 由於標准物質的缺少,在實際操作中缺乏實施性。
8.拉曼光譜法
拉曼光譜法低維納米材料的首選方法。它基於拉曼效應的非彈性光散射分析技術, 是由激發光的光子與材料的晶格振動相互作用所產生的非彈性散射光譜, 可用來對材料進行指紋分析。拉曼頻移與物質分子的轉動和振動能級有關, 不同的物質產生不同的拉曼頻移。拉曼頻率特徵可提供有價值的結構信息。利用拉曼光譜可以對納米材料進行分子結構、鍵態特徵分析、晶粒平均粒徑的測量等。
優點: 靈敏度高、不破壞樣品、方便快速。
缺點: 不同振動峰重疊和拉曼散射強度容易受光學系統參數等因素的影響;在進行傅里葉變換光譜分析時,常出現曲線的非線性問題等。
小結
納米材料粒度的測試方法多種多樣,但不同的測試方法對應的測量原理不同,因而不同測試方法之間不能進行橫向比較。不同的粒度分析方法均有其一定的適用范圍以及對應的樣品處理方法,所以在實際檢測時應綜合考慮納米材料的特性、測量目的、經濟成本等多方面因素,確定最終選用的測試方法。
參考資料
1.汪瑞俊,《納米材料粒度測試方法及標准化》;
2.譚和平等,《納米材料的表徵與測試方法》;
3.王書運,《納米顆粒的測量與表徵》。
D. 粒度分析
粒度與搬運流體的性質及其力學特徵密切相關,它是判別環境的標志之一。目前國際上應用最廣的粒度分級標準是伍登-溫德華粒級。它是以1mm作為基數乘以或除以2來分級的。後經克倫賓將其轉化為φ值。轉換公式為:
φ=-log2d
式中:d為毫米直徑值。形成一個以1為基數,2為公比數的等比級數列。如表4-3所示。
表4-3 伍登-溫德華φ值粒度標准
*有些分界點記為0.05mm;**有些分界點記為0.005mm
沉積物粒度測量方法,主要包括放大鏡、照片分析、篩析、沉降分析、顯微鏡下粒度分析等方法。針對不同的顆粒選擇適用的方法進行測量,其中,礫石等顆粒級別較大的多用皮尺或測量規直接測量,用量筒測礫石的體積。可松解或疏鬆的細、中碎屑岩多採用篩析法。粉砂及黏土岩常用沉降法、流水法等方法測量。固結的無法松解的岩石多採用顯微鏡下粒度分析。不同的方法測出的結果,略有差別,需校正後才能互用,其中沉降粒徑和篩析粒徑之間的偏差小於或等於0.1φ,可以直接互用。但薄片顯微鏡下分析粒徑,因存在切片效應,需經過弗里德曼(1962)所提出的粒度的回歸校正方程:
D=0.3815+0.9027d
式中:D為校正後的篩析粒徑,d是薄片中測定的視長徑,均為φ單位。進行校正後才能與篩析法的結果相互用,一般校正後的平均粒徑最大偏差一般不超過1/4φ單位。
此外,在粒度測量中雜基校正是一項重要的工作,其方法是:顯微鏡測至7φ,測定或估出雜基含量。取其2/3~1/2為校正值,假定為Δ,將各累計頻率乘以(100-Δ),重新繪曲線。對於弱固結岩石,可用同一標本既做篩析也作薄片分析,通過實驗求出校正系數(100-Δ)的數值。
粒度分析的結果可獲取到大量的測值,這種大量的數字資料要用統計的方法加以處理,才能推斷其與流體力學性質和沉積環境之間的關系。主要的方法是:根據資料做出一些圖件,從這些圖件上做定量的解釋分析。或者直接通過計算,統計參數。兩種方法各有優劣,往往需綜合分析利用。
粒度分析圖主要包括直方圖、頻率曲線圖和累積曲線圖(累積百分含量圖)。其中最常用的是累積百分含量圖,是由維希爾(1969)根據采自現代和古代不同環境內的1500個樣品測得的粒度數據,以粒徑(φ值)為橫坐標,以累積概率值為縱坐標,用來表現大於一定粒級的百分含量統計圖。他通過分析得出了沉積物搬運方式與粒度分布之間的關系,以及一些環境的概率圖模式(圖4-1)。
圖4-1 搬運方式與粒度分布的關系
(據Visher,1969)
沉積物的粒度一般不是表現為單一的對數正態分布,因此,在概率分布圖上總是表現為幾個相交的直線段。每個直線段是不同搬運方式產生的響應。主要包括牽引負載、跳躍負載和懸浮負載三種。其中,懸浮負載的顆粒一般很細,粒徑在0.1mm左右,其負載顆粒的粗細變化取決於介質的擾動強度,在概率圖上的右上角形成懸浮次總體;跳躍負載是指靠近河床底部層,通過在動盪的水中或流水中對顆粒進行分選,粒徑一般在0.15~1.0mm之間,往往是沉積樣品中分選最好的組分,在概率圖的中部形成跳躍次總體,其不是一個粒度總體,而是由兩部分組成,如海灘砂;底部牽引負載是粗粒組分,因顆粒粗而在地面上滾動,形成的滾動次總體位於圖的左下方。沉積物因粒徑大小和分選性的不同,經歷了不同的搬運方式,在累積概率圖上形成了不同的次總體直線。直線的不同斜率代表不同的分選性,斜率越大代表分選越好,一定的粒度分布區間和斜率,表明不同的次總體具有一定的平均粒徑和標准偏差。各直線段的交點稱為交截點,有的樣品在兩個粒度次總體間有混合帶,在圖上表現為兩線段圓滑接觸。
大量的粒度數據通過計算獲得各種分析參數後,往往也通過作圖來進行定量分析,最常用的是弗里德曼(1961,1967)通過對現代海洋與河流、湖灘沉積所做的粒度分析,用粒度參數離散圖(採用10種粒度參數,作出19種圖)來區分河流與海(湖)灘沉積。離散圖能夠把不同成因的砂區別開來,是由於不同成因的砂具有不相同的結構參數。
此外,C-M圖也是另外一種常用的圖版(圖4-2),它是應用每個樣品的C值和M值繪成的圖形,由Passega(1957,1964)所提出。其中,C值是累積曲線上顆粒含量1%處對應的粒徑,M值是累積曲線上50%處對應的粒徑。C值與樣品中最粗顆粒的粒徑相當,代表了水動力攪動開始搬運的最大能量;M值是中值,代表了水動力的平均能量。該圖版對於每一個樣品都可以用其C值和M值,在以C值為縱坐標,以M值為橫坐標的雙對數坐標紙上投得一個點,研究沉積地層包含的由粗至細的全部粒度結構類型樣品在圖紙上會投得一個點群。根據點群的分布繪出的圖形形態、分布范圍,以及圖形與C-M基線的關系等特點,與已知沉積環境的典型C-M圖進行對比,再結合其岩性特徵,從而對該層沉積岩的沉積環境做出判斷。
圖4-2 牽引流的C-M圖像及粒度類型
(據Passega,1964)
在C-M圖中,Ⅰ,Ⅱ,Ⅲ,Ⅸ 段表示C>1000μm,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ段表示C<1000μm。1表示牽引流沉積,2表示濁流沉積,「T」代表靜水懸浮沉積。「S」形圖是以河流沉積為例的完整C-M圖,可劃分為N—O—P—Q—R—S段。其中從左至右:
N—O段基本上由滾動顆粒組成,C值一般大於1mm(1000μm),常構成河流的砂壩礫石堆積物。
O—P段是滾動物質與間歇懸浮物質(跳躍)混合,物質組分中滾動組分與懸浮組分相混合。C值一般大於800μm,但由於滾動組分中有懸浮物質的參加,從而使M值有明顯的變化。C值稍微變化即會使M 值發生重大改變,即粒度分布極不對稱,粗細首尾不均。
P—Q段是以間歇懸浮質為主,粗粒滾動質減少。由上游至下游C值變化而M值不變,說明隨著流體搬運能力的減弱,越向下游滾動組分的顆粒越小。但由於滾動顆粒的數量並不多,因此M值基本不變。P點附近的C值以Cr表示,它代表著最易作滾動搬運的顆粒直徑。
Q—R段為遞變懸浮段,沉積物的特點是C值與M值相應變化,顯示出與C=M線平行的結果,主要搬運方式為遞變懸浮搬運,懸浮物質組分在流體中由下向上粒度逐漸變細,密度逐漸變低。它一般位於水流底部,常是由於渦流發育造成的。該段C的最大值以Cs表示。
R—S段為均勻懸浮段,是粒徑和密度不隨深度變化的完全懸浮,隨著M值向S端逐漸變小,C值基本不變,最大C值即Cu,它代表均勻懸浮搬運的最大粒級。搬運方式常是遞變懸浮之上的上層水流搬運,不受底流搬運分選,物質組成主要為粉砂和泥質混合物,最粗的粒度為細砂。表示在河流中從上游至下游沉積物的粒度成分變化不大,只是粗粒級含量相對減少。
C-M圖也可用來研究水深、分選性、古流速和碎屑岩分類等,它是一種多功能綜合圖。
E. 實習二 粒度分析資料整理與分析
沉積物的顆粒大小稱為粒度。研究碎屑沉積物和碎屑岩的粒度分布特徵的方法稱為粒度分析。粒度分布特徵可反映沉積介質的流體力學性質,故是判別水動力條件及沉積環境的一個重要標志,而且對於油氣沉積儲層的評價具有重要意義。
碎屑物質的搬運和沉積作用受水動力條件(如介質、流量、流速)的控制。因此,粒度大小及分布特徵,可用來直接反映沉積時的水動力條件。
研究粒度分布特徵,可提供以下信息:①明確搬運介質性質,如風、水、冰川、泥石流、濁流等;②判斷搬運介質的能量條件,如流速、強度、起動能力等;③明確搬運方式,如滾動、跳躍、懸浮等;④明確沉積作用流體的性質,如牽引流、濁流等。
一、顆粒的測量與分組
粒度分析的方法很多,從原始的手工測量到由計算機控制的自動化儀器測量均有。最常用的方法有:直接測量法、篩析法、薄片法、激光衍射粒度分析等。選用的方法取決於測定對象的粒度大小及岩石的緻密程度。對於緻密的砂岩和粉砂岩一般採用薄片粒度分析法,即在顯微鏡下,用測微尺直接測量岩石薄片中顆粒的最大視直徑,或將攝像裝置與顯微鏡連接,使用由計算機控制的圖像分析儀測量岩石薄片中顆粒的最大視直徑。統計測量時的抽樣方法可採用線測法或視域帶法:線測法可用劃線或機械台控制測線,凡測線上的顆粒均測,適合於人工測量;視域帶法就是在一個視域內的顆粒全部測完後再移至相鄰的下一個視域,兩個視域應在某一十字絲方向上相切,適合於圖像分析測量。每個岩石樣品的薄片要求統計300~500個顆粒,並將測量直徑d(mm)換算成ϕ值(d值和ϕ值的對應關系見表2-1),按
表2-1 粒徑d值和ϕ值的對應表
二、粒徑校正與雜基校正
(一)粒徑校正
運用薄片粒度分析的方法所得到的分析結果與篩析法得到的結果有一定的偏差,薄片粒度與篩析粒徑之間的偏差可達0.25ϕ或更大,這是切片效應造成的結果(切片效應是指在顆粒集合體的切片中,顆粒的視直徑均小於其真直徑),因此必須進行校正。常用弗里德曼(1962)提出的粒度校正公式:
D=0.3815+0.9027d
式中:D為校正後篩析直徑,ϕ;d為薄片中視直徑,mm。
(二)雜基校正
在運用薄片粒度法進行粒度分析時還必須考慮砂岩中基質的影響,即進行雜基校正,方法是用顯微鏡測定或估出雜基含量,由於切片效應和成岩後生作用,估計的雜基含量值一般較高,常取其2/3或1/2為校正值,假定為x,將各累計頻率乘以(100-x)作為該粒級的真正百分含量。
三、資料整理和編圖的步驟和方法
(一)直方圖
直方圖是最常用的粒度分析圖件(圖2-1a),其橫坐標為顆粒粒徑(d值或ϕ值)區間,縱坐標表示各粒級區間的百分含量,作出一系列相互連接、高低不平的矩形圖。直方圖優點是能直觀、簡明地反映出粒度分布特徵(繪制直方圖時為使圖件美觀,要注意縱、橫坐標的比例關系)。
圖2-1 直方圖(a)及由直方圖所作頻率曲線(b)
(二)頻率曲線
頻率曲線是用平滑曲線將直方圖每個柱子頂端橫邊的中點依次連接而成的曲線(圖2-1b),其圍限的面積基本等於直方圖的面積和。頻率曲線可清楚地表明粒度分布特點、分選好壞、粒度分布的對稱度(偏度)及尖度(峰度)等。
(三)累積曲線
累積曲線是以累積百分含量為縱坐標(算術標度),以粒徑(d值或ϕ值)為橫坐標,從粗粒一端開始,在圖上標出每一粒級的累計百分含量。將各點以圓滑的曲線連接起來,即成累積曲線(圖2-2之2)。累積曲線一般呈S形,從圖上可看出其粒級分選的好壞,在計算粒度參數時也可由圖上讀出某些累計百分比對應的粒徑值。
(四)概率累積曲線
概率累積曲線也是一種粒度累積曲線(圖2-3),它是在正態概率紙上繪制的,橫坐標代表粒徑(d值或ϕ值);縱坐標為以概率標度的累積百分數,概率坐標不是等間距的,而是以50%處為對稱中心,上下兩端相應地逐漸加大,這樣可以將粗、細尾部放大,並清楚地表現出來。概率曲線一般包含有3個次總體(也有部分圖件只有1個或2個次總體),在概率圖上表現為3個直線段,代表了3種不同的搬運方式,即懸浮搬運、跳躍搬運和滾動搬運。3個次總體在累積概率曲線上分別稱為懸浮總體、跳躍總體和滾動總體(牽引總體),概率圖上除3個次總體之外的其他參數有:截點、混合度、次總體百分含量、分選性。
圖2-2 三種常見的粒度曲線
(據賴內克等,1973;轉引自陳建強等,2015)
1—頻率曲線;2—累積曲線;3—概率累積曲線
圖2-3 概率累積曲線及粒度分布中的總體
(據維謝爾,1969;轉引自陳建強等,2015)
(五)粒度參數計算
常用的粒度參數有平均粒度(Mz)、標准偏差(σi)、偏度(Sk)、峰態(KG),常用圖解法計算粒度參數,即從累積曲線上讀出某些累積百分比處的顆粒直徑(ϕ值),再以簡單算術公式計算各種粒度參數。
(1)平均粒度(Mz):表示一個樣品的平均粒度大小,反映搬運介質平均動能,計算公式為:
沉積學及古地理學實習指導書
(2)標准偏差(σi):表示分選程度,即反映顆粒的分散和集中狀態,計算公式為:
沉積學及古地理學實習指導書
(3)偏度(Sk):用來表示頻率曲線對稱性的參數,偏度計算公式為:
沉積學及古地理學實習指導書
(4)峰態或尖度(KG):用來在與正態頻率曲線相對比時,說明曲線的尖銳或鈍圓程度。峰態計算公式為:
沉積學及古地理學實習指導書
(六)C-M圖
C-M圖是帕塞加(Passega)提出的綜合性成因圖解(圖2-4),是一種粒度參數散布圖。一般認為C值和M值這兩個粒度參數最能反映介質搬運和沉積作用的能力,故運用這兩個參數分別作為雙對數坐標紙上的縱、橫坐標(以微米為單位),構成C-M圖。C值為累積曲線上含量為1%的粒徑值(以微米為單位);M值為累積曲線上含量為50%的粒徑值(以微米為單位)。
圖2-4 濁流和牽引流沉積的C-M圖型
(據Passega,1964)
典型的C-M圖形可劃分為NO、OP、PQ、QR、RS各段和T區。不同區段代表不同沉積作用的產物:①NO段代表滾動搬運的粗粒物質,C值大於1mm;②OP段以滾動搬運為主,滾動組分和懸浮組分相混合,C值一般大於800μm,而M值有明顯變化;③PQ段以懸浮搬運為主,含有少量滾動組分,C值變化而M值不變;④QR段代表遞變懸浮段,遞變懸浮搬運是指在流體中懸浮物質由下到上粒度逐漸變細,密度逐漸變低,C值與M值成比例變化,從而使這段圖形與C=M基線平行;⑤RS段為均勻懸浮段,C值變化不大,而M值變化大,主要是細粉砂沉積物;⑥T區為遠洋懸浮物,M<10μm。
編制C-M圖的樣品通常從一套同成因的地層單元中系統採集,從最粗到最細粒的各種代表性岩性中均應分別取樣,每一個C-M圖取樣數一般為20~30個,在C-M圖上構成一個點群,描繪出點群的外形即為C-M圖。因此,每一個C-M圖可反映幾米至幾十米厚的同成因地層剖面岩石的粒度特徵。
四、實習內容
根據所給數據資料繪制粒度分析的直方圖、頻率曲線、累積曲線、概率累積曲線和C-M圖。用圖解法計算粒度參數,並解釋其環境意義。
五、實習目的與要求
掌握粒度分析資料的整理、圖件的編制、粒度參數的計算及解釋。
六、實習資料和作業
(一)實習資料
(1)樣品A薄片粒度測量數據統計表(表2-2)。
表2-2 樣品A薄片粒度測量數據統計表
(2)地層B薄片粒度分析的C-M值(表2-3)。
表2-3 地層B薄片粒度分析的C-M值
(二)作業
(1)根據表2-2所給數據分別繪制樣品A的直方圖、頻率曲線、累積曲線、概率累積曲線。
(2)用圖解法計算粒度參數:平均粒度(Mz)、標准偏差(σi)、偏度(Sk)、峰態(KG),並解釋其環境意義。
(3)根據所給的地層B薄片粒度分析的C-M數據(表2-3)編制C-M圖,並進行流體性質和沉積環境解釋。
實習報告二 粒度分析資料整理與分析
沉積學及古地理學實習指導書
沉積學及古地理學實習指導書
F. 粒度分析方法的選擇
粒度分析方法視碎屑岩顆粒大小和岩石緻密程度而異。
1.礫岩的粒度分析方法
礫岩的粒度分析,主要在野外進行,一般採用篩析和直接測量兩種方法。對膠結不太堅固的礫石和疏鬆的礫石層,先用孔徑為10 mm和1 mm的篩子過篩;小於1 mm的基質和膠結物,可帶回室內進行再細分;10~1 mm的細礫部分若是含量多而差異大者要用篩析方法進行細分;10 mm以上的礫石,一般在野外用尺子直接測量。然後將各粒級的礫石分別稱重,填於粒度分析表中。由於礫岩在垂向和平面上的多變性,應選擇有代表性的取樣地點,而且樣品質量不少於25~30 kg,否則誤差就可能相當大。對於膠結堅固的礫岩,可在風化帶上進行粒度測量,或采標本回室內,先進行膠結處理,將礫石分開,再進行粒度測量。
2.砂岩和粉砂岩的粒度分析方法
砂岩和粉砂岩的粒度分析常採用篩析法、沉速法和薄片法,常用的沉速法有阿茲尼法、沙巴寧法和羅賓遜法等。篩析法和沉速法適用於未固結的疏鬆岩石,如粗碎屑岩,一般只用篩析法;而中-細粒碎屑岩由於常常含有較多的粉砂和黏土,常將沉速法與篩析法相結合使用。薄片法主要用於固結堅硬的岩石。一般說來,篩析法適用於大於0.25 mm的顆粒,亦可用於大於0.1 mm的顆粒,而沉速法適用於小於0.25 mm的顆粒。
用不同粒度分析方法所得的結果之間會有一定的差異。同一地區最好採用同一方法,以便於資料間的對比應用,若用不同方法,需要經過換算後才能應用。
G. 常規的粒度分析方法有幾種
測粒度分布的有:篩分法、沉降法、激光法、電感法(庫爾特)。
測比表面積的有:空氣透過法(沒淘汰)、氣體吸附法。
直觀的有:(電子)顯微鏡法、全息照相法。
H. 目前常採的粒度分析方法有哪些
測粒度分布的有:篩分法、沉降法、激光法、電感法(庫爾特)。
測比表面積的有:空氣透過法(沒淘汰)、氣體吸附法。
直觀的有:(電子)顯微鏡法、全息照相法。
顯微鏡法(Micros)
SEM、TEM;1nm~5μm范圍。
適合納米材料的粒度大小和形貌分析。
沉降法(Sedimentation Size Analysis) 沉降法的原理是基於顆粒在懸浮體系時,顆粒本身重力(或所受離心力)、所受浮力和黏滯阻力三者平衡,並且黏滯力服從斯托克斯定律來實施測定的,此時顆粒在懸浮體系中以恆定速度沉降,且沉降速度與粒度大小的平方成正比。10nm~20μm的顆粒。
光散射法(Light Scattering)
激光衍射式粒度儀僅對粒度在5μm以上的樣品分析較准確,而動態光散射粒度儀則對粒度在5μm以下的納米樣品分析准確。
激光光散射法可以測量20nm-3500μm的粒度分布,獲得的是等效球體積分布,測量准確,速度快,代表性強,重復性好,適合混合物料的測量。
利用光子相干光譜方法可以測量1nm-3000nm范圍的粒度分布,特別適合超細納米材料的粒度分析研究。測量體積分布,准確性高,測量速度快,動態范圍寬,可以研究分散體系的穩定性。其缺點是不適用於粒度分布寬的樣品測定。
光散射粒度測試方法的特點
測量范圍廣,現在最先進的激光光散射粒度測試儀可以測量1nm~3000μm,基本滿足了超細粉體技術的要
光散射力度測試遠離示意圖
求。
測定速度快,自動化程度高,操作簡單。一般只需1~1.5min。
測量准確,重現性好。
可以獲得粒度分布。
激光相干光譜粒度分析法
通過光子相關光譜(PCS)法,可以測量粒子的遷移速率。而液體中的納米顆粒以布朗運動為主,其運動速度取決於粒徑,溫度和粘度等因素。在恆定的溫度和粘度條件下,通過光子相關光譜(PCS)法測定顆粒的遷移速率就可以獲得相應的顆粒粒度分布。
光子相關光譜(pcs)技術能夠測量粒度度為納米量級的懸浮物粒子,它在納米材料,生物工程、葯物學以及微生物領域有廣泛的應用前景。
優點是可以提供顆粒大小,分布以及形狀的數據。此外,一般測量顆粒的大小可以從1納米到幾個微米數量級。
並且給的是顆粒圖像的直觀數據,容易理解。但其缺點是樣品制備過程會對結果產生嚴重影響,如樣品制備的分散性,直接會影響電鏡觀察質量和分析結果。電鏡取樣量少,會產生取樣過程的非代表性。
適合電鏡法粒度分析的儀器主要有掃描電鏡和透射電鏡。普通掃描電鏡的顆粒解析度一般在6nm左右,場發射掃描電鏡的解析度可以達到0.5nm。
掃描電鏡對納米粉體樣品可以進行溶液分散法制樣,也可以直接進行乾粉制樣。對樣品制備的要求比較低,但由於電鏡對樣品有求有一定的導電性能,因此,對於非導電性樣品需要進行表面蒸鍍導電層如表面蒸金,蒸碳等。一般顆粒在10納米以下的樣品比較不能蒸金,因為金顆粒的大小在8納米左右,會產生干擾的,應採取蒸碳方式。
掃描電鏡有很大的掃描范圍,原則上從1nm到mm量級均可以用掃描電鏡進行粒度分析。而對於透射電鏡,由於需要電子束透過樣品,因此,適用的粒度分析范圍在1-300nm之間。
對於電鏡法粒度分析還可以和電鏡的其他技術連用,可以實現對顆粒成份和晶體結構的測定,這是其他粒度分析法不能實現的。