導航:首頁 > 研究方法 > 數據挖掘方法分析方法

數據挖掘方法分析方法

發布時間:2022-01-24 08:50:37

① 數據挖掘與傳統分析方法什麼區別

傳統數據分析很多情況下需要用到成型的分析工具,比如EXCEL、SPSS,或者SASR。一個完全不懂編程,不會敲代碼的人完全可以是一名能好的數據分析師,因為一般情況下OFFICE包含的幾個工具已經可以滿足大多數數據分析的要求了。而數據挖掘則需要有編程基礎。一是目前的數據挖掘方面及相關的研究生方面絕大多數是隸屬於計算機系;二是在招聘崗位上,國內比較大的公司掛的崗位名稱大多數為「數據挖掘工程師」。

首先數據分析師對於所從事的行業要有比較深的了解和理解,並且能夠將數據與自身的業務緊密結合起來。簡單舉個例子來說,給你一份業務經營報表,你就能在腦海中勾畫出目前經營狀況圖,能夠看出哪裡出現了問題。但是,從事數據挖掘不一定要求對行業有這么高的要求。數據分析師更關注於業務層面,數據挖掘工程師更關注於技術層面。

關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力點擊預約免費試聽課。

② 數據挖掘的方法有哪些

神經網路方法


神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。


遺傳演算法


遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性、易於和其它模型結合等性質使得它在數據挖掘中被加以應用。


決策樹方法


決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。


粗集方法


粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;演算法簡單,易於操作。粗集處理的對象是類似二維關系表的信息表。


覆蓋正例排斥反例方法


它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與欄位取值構成的選擇子相容則捨去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。


統計分析方法


在資料庫欄位項之間存在兩種關系:函數關系和相關關系,對它們的分析可採用統計學方法,即利用統計學原理對資料庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。


模糊集方法


即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。


關於數據挖掘的方法有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

③ 什麼是數據挖掘數據挖掘與傳統分析方法有什麼區別

數據挖掘又譯為資料探勘、數據采礦。是一種透過數理模式來分析企業內儲存的大量資料,以找出不同的客戶或市場劃分,分析出消費者喜好和行為的方法。它是資料庫知識發現中的一個步驟。數據挖掘一般是指從大量的數據中自動搜索隱藏於其中的有著特殊關系性的信息的過程。主要有數據准備、規律尋找和規律表示3個步驟。數據挖掘的任務有關聯分析、聚類分析、分類分析、異常分析、特異群組分析和演變分析等。數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統(依靠過去的經驗法則)和模式識別等諸多方法來實現上述目標。
是一個用數據發現問題、解決問題的學科。
通常通過對數據的探索、處理、分析或建模實現。
我們可以看到數據挖掘具有以下幾個特點:
基於大量數據:並非說小數據量上就不可以進行挖掘,實際上大多數數據挖掘的演算法都可以在小數據量上運行並得到結果。但是,一方面過小的數據量完全可以通過人工分析來總結規律,另一方面來說,小數據量常常無法反映出真實世界中的普遍特性。
非平凡性:所謂非平凡,指的是挖掘出來的知識應該是不簡單的,絕不能是類似某著名體育評論員所說的「經過我的計算,我發現了一個有趣的現象,到本場比賽結束 為止,這屆世界盃的進球數和失球數是一樣的。非常的巧合!」那種知識。這點看起來勿庸贅言,但是很多不懂業務知識的數據挖掘新手卻常常犯這種錯誤。
隱含性:數據挖掘是要發現深藏在數據內部的知識,而不是那些直接浮現在數據表面的信息。常用的BI工具,例如報表和OLAP,完全可以讓用戶找出這些信息。
新奇性:挖掘出來的知識應該是以前未知的,否則只不過是驗證了業務專家的經驗而已。只有全新的知識,才可以幫助企業獲得進一步的洞察力。
價值性:挖掘的結果必須能給企業帶來直接的或間接的效益。有人說數據挖掘只是「屠龍之技」,看起來神乎其神,卻什麼用處也沒有。這只是一種誤解,不可否認的 是在一些數據挖掘項目中,或者因為缺乏明確的業務目標,或者因為數據質量的不足,或者因為人們對改變業務流程的抵制,或者因為挖掘人員的經驗不足,都會導 致效果不佳甚至完全沒有效果。但大量的成功案例也在證明,數據挖掘的確可以變成提升效益的利器

④ 數據挖掘中實用分析方法有哪些

1.基於歷史的MBR分析

基於歷史(Memory-Based Reasoning)的MBR分析方法最主要的概念是用已知的案例(case)來預測未來案例的一些屬性(attribute),通常找尋最相似的案例來做比較。


MBR中有兩個主要的要素,分別為距離函數(distance function)與結合函數(combination function)。距離函數的用意在找出最相似的案例;結合函數則將相似案例的屬性結合起來,以供預測之用。


MBR的優點是它容許各種型態的數據,這些數據不需服從某些假設。另一個優點是其具備學習能力,它能藉由舊案例的學習來獲取關於新案例的知識。較令人詬病的是它需要大量的歷史數據,有足夠的歷史數據方能做良好的預測。此外記憶基礎推理法在處理上亦較為費時,不易發現最佳的距離函數與結合函數。其可應用的范圍包括欺騙行為的偵測、客戶反應預測、醫學診療、反應的歸類等方面。


2.購物籃分析


購物籃分析(Market Basket Analysis)最主要的目的在於找出什麼樣的東西應該放在一起商業上的應用在藉由顧客的購買行為來了解是什麼樣的顧客以及這些顧客為什麼買這些產品, 找出相關的聯想(association)規則,企業藉由這些規則的挖掘獲得利益與建立競爭優勢。舉例來說,零售店可藉由此分析改變置物架上的商品排列或是設計 吸引客戶的商業套餐等等。


購物籃分析基本運作過程包含下列三點:


選擇正確的品項:這里所指的正確乃是針對企業體而言,必須要在數以百計、千計品項中選擇出真正有用的品項出來。


經由對共同發生矩陣(co-occurrence matrix)的探討挖掘出聯想規則。


克服實際上的限制:所選擇的品項愈多,計算所耗費的資源與時間愈久(呈現指數遞增),此時必須運用一些技術以降低資源與時間的損耗。


購物籃分析技術可以應用在下列問題上:針對信用卡購物,能夠預測未來顧客可能購買什麼。對於電信與金融服務業而言,經由購物籃分析能夠設計不同的服務組合以擴大利潤。保險業能藉由購物籃分析偵測出可能不尋常的投保組合並作預防。對病人而言,在療程的組合上,購物籃分析能作為是否這些療程組合會導致並發症的判斷依據。


3.決策樹


決策樹(Decision Trees)在解決歸類與預測上有著極強的能力,它以法則的方式表達,而這些法則則以一連串的問題表示出來,經由不斷詢問問題最終能導出所需的結果。典型的決策樹頂端是一個樹根,底部有許多的樹葉,它將紀錄分解成不同的子集,每個子集中的欄位可能都包含一個簡單的法則。此外,決策樹可能有著不同的外型,例如二元 樹、三元樹或混和的決策樹型態。


4.遺傳演算法


遺傳演算法(Genetic Algorithm)學習細胞演化的過程,細胞間可經由不斷的選擇、復制、交配、突變產生更佳的新細胞。基因演算法的運作方式也很類似,它必須預先建立好一個模式,再經由一連串類似產生新細胞過程的運作,利用適合函數(fitness function)決定所產生的後代是否與這個模式吻合,最後僅有最吻合的結果能夠存活,這個程序一直運作直到此函數收斂到最佳解。基因演算法在群集 (cluster)問題上有不錯的表現,一般可用來輔助記憶基礎推理法與類神經網路的應用。


5.聚類分析


聚類分析(Cluster Detection)這個技術涵蓋范圍相當廣泛,包含基因演算法、類神經網路、統計學中的群集分析都有這個功能。它的目標為找出數據中以前未知的相似群體,在許許多多的分析中,剛開始都運用到群集偵測技術,以作為研究的開端。

⑤ 數據挖掘的常用方法都有哪些

在數據分析中,數據挖掘工作是一個十分重要的工作,可以說,數據挖掘工作占據數據分析工作的時間將近一半,由此可見數據挖掘的重要性,要想做好數據挖掘工作需要掌握一些方法,那麼數據挖掘的常用方法都有哪些呢?下面就由小編為大家解答一下這個問題。
首先給大家說一下神經網路方法。神經網路是模擬人類的形象直覺思維,在生物神經網路研究的基礎上,根據生物神經元和神經網路的特點,通過簡化、歸納、提煉總結出來的一類並行處理網路,利用其非線性映射的思想和並行處理的方法,用神經網路本身結構來表達輸入和輸出的關聯知識。神經網路方法在數據挖掘中十分常見。
然後給大家說一下粗糙集方法。粗糙集理論是一種研究不精確、不確定知識的數學工具。粗糙集處理的對象是類似二維關系表的信息表。目前成熟的關系資料庫管理系統和新發展起來的數據倉庫管理系統,為粗糙集的數據挖掘奠定了堅實的基礎。粗糙集理論能夠在缺少先驗知識的情況下,對數據進行分類處理。在該方法中知識是以信息系統的形式表示的,先對信息系統進行歸約,再從經過歸約後的知識庫抽取得到更有價值、更准確的一系列規則。因此,基於粗糙集的數據挖掘演算法實際上就是對大量數據構成的信息系統進行約簡,得到一種屬性歸約集的過程,最後抽取規則。
而決策樹方法也是數據挖掘的常用方法之一。決策樹是一種常用於預測模型的演算法,它通過一系列規則將大量數據有目的分類,從中找到一些有價值的、潛在的信息。它的主要優點是描述簡單,分類速度快,易於理解、精度較高,特別適合大規模的數據處理,在知識發現系統中應用較廣。它的主要缺點是很難基於多個變數組合發現規則。在數據挖掘中,決策樹常用於分類。
最後給大家說的是遺傳演算法。遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法。數據挖掘是從大量數據中提取人們感興趣的知識,這些知識是隱含的、事先未知的、潛在有用的信息。因此,許多數據挖掘問題可以看成是搜索問題,資料庫或者數據倉庫為搜索空間,挖掘演算法是搜索策略。
上述的內容就是我們為大家講解的數據挖掘工作中常用的方法了,數據挖掘工作常用的方法就是神經網路方法、粗糙集方法、決策樹方法、遺傳演算法,掌握了這些方法才能夠做好數據挖掘工作。

⑥ 用於數據挖掘的統計分析方法有什麼

1.記憶基礎推理法,記憶基礎推理法最主要的概念是用已知的案例來預測未來案例的一些屬性。
2.市場購物籃分析。
3.決策樹,決策樹在解決歸類與預測上有著極強的能力。
4.基因演算法,基因演算法學習細胞演化的過程。
5.群集偵測技術,包含基因演算法、類神經網路、統計學中的群集分析都有這個功能。
6.連結分析。
7.在線分析處理。
8.類神經網路類神經網路是以重復學習的方法,將一串例子交與學習,使其歸納出一足以區分的樣式。
9.區別分析,通常應用在解決分類的問題上面。
10.羅吉斯回歸分析,當區別分析中群體不符合常態分配假設時,羅吉斯回歸分析是一個很好的替代方法。

關於數據挖掘的相關學習,推薦CDA數據師的相關課程,CDA數據分析師課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。

⑦ 簡述數據挖掘和傳統分析方法的區別

數據挖掘和傳統分析方法最大的區別在於對計算機編程能力的要求。
作為數據分析很多情況下需要用到成型的分析工具,比如EXCEL、SPSS,或者SAS、R。一個完全不懂編程,不會敲代碼的人完全可以是一名能好的數據分析師,因為一般情況下OFFICE包含的幾個工具已經可以滿足大多數數據分析的要求了。
而數據挖掘則需要有編程基礎。一是目前的數據挖掘方面及相關的研究生方面絕大多數是隸屬於計算機系;二是在招聘崗位上,國內比較大的公司掛的崗位名稱大多數為「數據挖掘工程師」。在對行業的理解的能力數據分析師對於所從事的行業要有比較深的了解和理解,並且能夠將數據與自身的業務緊密結合起來。簡單舉個例子來說,給你一份業務經營報表,你就能在腦海中勾畫出目前經營狀況圖,能夠看出哪裡出現了問題。但是,從事數據挖掘不一定要求對行業有這么高的要求。專業知識面的要求數據分析師更關注於業務層面,數據挖掘工程師更關注於技術層面。

想要學習了解更多數據挖掘的信息,推薦CDA數據分析師課程。CDA 數據分析師行業標准由國際范圍數據科學領域的行業專家、學者及知名企業共同制定並每年修訂更新,確保了標準的公立性、權威性、前沿性。通過 CDA 認證考試者可獲得 CDA 數據分析師中英文認證證書。點擊預約免費試聽課。

⑧ 數據挖掘的統計方法有哪些

傳統的數據挖掘統計方法包括回歸分析、主成分分析、聚類分析;
非機器的數據挖掘統計學習方法包括模糊集、粗糙集、支持向量機。

數據挖掘是指從大量的數據中通過演算法搜索隱藏於其中信息的過程。數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統和模式識別等諸多方法來實現上述目標。現在人們迫切希望能對海量數據進行深入分析,發現並提取隱藏在其中的信息,以便更好地利用這些數據,正是因為這樣的需求,數據挖掘技術應運而生。數據挖掘有很多合法的用途,例如可以在患者群的資料庫中查出某葯物和其副作用的關系。這種關系可能在1000人中也不會出現一例,但葯物學相關的項目就可以運用此方法減少對葯物有不良反應的病人數量,還有可能挽救生命。

關於數據挖掘的相關學習,這里推薦CDA數據師的相關課程,課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。要求學生具備從數據治理根源出發的思維,通過數字化工作方法來探查業務問題,通過近因分析、宏觀根因分析等手段,再選擇業務流程優化工具還是演算法工具,而非「遇到問題調演算法包」。點擊預約免費試聽課。

⑨ 常見的數據挖掘方法有哪些

數據挖掘的常用方法有:

閱讀全文

與數據挖掘方法分析方法相關的資料

熱點內容
新病毒有沒有解決方法 瀏覽:66
用簡便方法計算有哪些算式 瀏覽:718
生而為人唱歌技巧和發聲方法 瀏覽:534
電線防水膠布如何使用方法 瀏覽:708
如何調漂最快最簡單方法 瀏覽:355
高壓鍋燉葯用什麼方法洗掉 瀏覽:684
治療近視的按摩方法 瀏覽:134
解凍糧食最快方法是什麼 瀏覽:555
直接測量速度的方法有哪些 瀏覽:254
如何用最簡單的方法炒土豆絲 瀏覽:664
無底洞運用了什麼樣的說明方法 瀏覽:620
鼻中隔壓迫感怎麼治療方法 瀏覽:876
快展架安裝方法圖片 瀏覽:276
芝麻葉最好最正確的食用方法 瀏覽:373
精神病食療治療方法 瀏覽:159
咒人死的方法有哪些 瀏覽:383
從研究方法的性質來劃分 瀏覽:755
法制宣傳方法有哪些 瀏覽:625
冬蟲夏草食用方法如何食用最佳 瀏覽:904
cookie的使用方法 瀏覽:508