㈠ 如何凈化飲用水
常用到的凈化飲用水方法:
一、離子交換法
離子交換法是以圓球形樹脂(離子交換樹脂)過濾原水,水中的離子會與固定在樹脂上的離子交換。常見的兩種離子交換方法分別是硬水軟化和去離子法。硬水軟化主要是用在反滲透(RO)處理之前,先將水質硬度降低的一種前處理程序。軟化機裡面的球狀樹脂,以兩個鈉離子交換一個鈣離子或鎂離子的方式來軟化水質。
離子交換樹脂利用氫離子交換陽離子,而以氫氧根離子交換陰離子;以包含磺酸根的苯乙烯和二乙烯苯製成的陽離子交換樹脂會以氫離子交換碰到的各種陽離子(例如Na+、Ca2+、Al3+)。同樣的,以包含季銨鹽的苯乙烯製成的陰離子交換樹脂會以氫氧根離子交換碰到的各種陰離子(如Cl-)。從陽離子交換樹脂釋出的氫離子與從陰離子交換樹脂釋出的氫氧根離子相結合後生成純水。
陰陽離子交換樹脂可被分別包裝在不同的離子交換床中,分成所謂的陰離子交換床和陽離子交換床。也可以將陽離子交換樹脂與陰離子交換樹脂混在一起,置於同一個離子交換床中。不論是那一種形式,當樹脂與水中帶電荷的雜質交換完樹脂上的氫離子及(或)氫氧根離子,就必須進行「再生」。再生的程序恰與凈化的程序相反,利用氫離子及氫氧根離子進行再生,交換附著在離子交換樹脂上的雜質。
若將離子交換法與其他凈化水質方法(例如反滲透法、過濾法和活性碳吸附法)組合應用時,則離子交換法在整個凈化系統中,將扮演非常重要的一個部分。離子交換法能有效的去除離子,卻無法有效的去除大部分的有機物或微生物。而微生物可附著在樹脂上,並以樹脂作為培養基,使得微生物可快速生長並產生熱源。因此,需配合其他的凈化方法設計使用。
二、活性碳吸附法
有機物可能是陽離子、陰離子或非離子性的物質,離子交換樹脂可去除原水中一些可溶性的有機酸和有機鹼(陰離子和陽離子),但有些非離子性的有機物卻會被樹脂包覆,這過程稱為樹脂的「污染阻塞」現象,不但會減少樹脂的壽命,而且降低其交換能力。為保護離子交換樹脂,可將活性碳過濾器安裝在離子交換樹脂之前,以去除非離子性的有機物。
活性碳的吸附過程是利用活性碳過濾器的孔隙大小及有機物通過孔隙時的滲透率來達到的。吸附率和有機物的分子量及其分子大小有關,某些顆粒狀的活性碳較能有效的去除氯胺。活性碳也能去除水中的自由氯,以保護純水系統內其他對氧化劑敏感的凈化單元。
活性碳通常與其他的處理方法組合應用。在設計純水系統時,活性碳與其他相關凈化單位的相關配置,是一項極為重要的項目。
三、微孔過濾法
微孔過濾法包括三種類型:深層過濾(depth)、篩網過濾(screen)及表面過濾(surface)。深層濾膜是以編織纖維或壓縮材料製成的基質,利用隨機性吸附或是捕捉方式來滯留顆粒。篩網濾膜基本上是具有一致性的結構,就像篩子一般,將大於孔徑的顆粒,都滯留在表面上(這種濾膜的孔徑大小是非常精確的),而表面過濾則是多層結構,當溶液通過濾膜時,較濾膜內部孔隙大的顆粒將被滯留下來,並主要堆積在濾膜表面上。
由於上述三種濾膜的功能不同,因此對濾膜之間的分辨非常重要。由於深層過濾是一種較為經濟的方式,可去除98%以上的懸浮固體,同時保護下游的凈化單元不會敗壞或堵塞,因此通常被作為預過濾處理。表面過濾可去除99.99%以上的懸浮固體,所以也可作為預過濾處理或澄清用。微孔薄膜(篩網濾膜)一般被置於凈化系統中的最終使用點,以去除最後殘留的微量樹脂碎片、碳屑、膠質顆粒和微生物。例如:0.22μm微孔濾膜,其可濾過所有的細菌,通常用於將靜脈注射用的液體、血清及抗生素進行除菌用。
四、超濾法
微孔薄膜是依其孔徑大小來去除顆粒,而超濾(UF)薄膜則是一個分子篩,它以尺寸為基準,讓溶液通過極細微的濾膜,以達到分離溶液中不同大小分子的目的。
超濾膜是一種強韌、薄、具有選擇性的通透膜,可截留大部分某種特定大小以上的分子,包括:膠質、微生物和熱源。較小的分子,例如:水和離子,都可通過濾膜。所以,超濾法可將截留液中的大分子加以濃縮,但是,仍有些大分子會滲漏至濾過液中。
超濾膜有數種不同的范圍,在所有的實例中,超濾膜會留在大部分大於其分子篩所定義分子量的分子。
五、反滲透法
反滲透(RO)法是可達到90%~99%雜質去除率中最經濟的方法。RO膜的濾孔結構較UF膜還要緻密,RO膜可去除所有的顆粒、細菌以及分子量大於300的有機物(包括熱源)。
當第二種不同濃度的溶液,由一個半透膜隔開時,滲透現象會自然發生。滲透壓將水壓過半透膜,水將濃度較高的溶液稀釋,最後造成濃度平衡。在水凈化系統中,施加壓力於高濃度的溶液中,以抗衡滲透壓。如此迫使得純水由高濃度的液體通過RO膜,並可加以收集。由於RO膜緻密度極高,因此,產出的水流很慢,需要經過相當的時間,貯水箱內才會有足夠的水量。
RO膜可執行離子排除,使得只有水可通過RO膜,其餘所有的離子及溶解的分子都被截留,並加以排除(包括鹽類和糖)。RO膜以電荷反應將離子排除,帶電荷愈大,排除性愈高,所以RO膜幾乎可排除所有的(>99%)強離子性的高價離子,但是,對於弱離子性的單價離子(如鈉離子)的效果只有95%。不同的進水需要不同種類的RO膜,RO膜包括由乙酸纖維酯製成,或是以聚硫胺與聚碸基質的混合薄層聚合物。
如果以原水水質及產水水質為基準,經過適當設計後,RO是將自來水凈化的最經濟有效方法。RO同時也是試劑級純水系統最好的前處理方法。
六、紫外線照射法
紫外線照射法已廣泛的使用在水處理上,低壓水銀燈所放射出來的254nm的紫外線是一種有效的殺菌方法,因為細菌中的DNA及蛋白質會吸收紫外線而導致死亡。
近來在UV燈製造技術方面的進步,已可製造同時產生185nm和254nm波長的紫外燈管,這種光波長組合可利用光氧化有機化合物,接著這種特殊燈泡,將純水中的總有機碳濃度降低至5ppb以下。
㈡ 飲用水凈化處理方法
飲用水凈化處理方法如下:
沉砂池:一般設在泵站和沉澱池之前。平流沉砂池(最常用)、曝氣沉砂池(曝氣除砂一體,可使沉砂中的有機物含量降至5%以下)。
隔油池:自然上浮法去除可浮油的設施。平流式隔油池、斜板式隔油池。
沉澱池根據池內水流方向分為(3種):平流沉澱池、輻流式沉澱池、豎流沉澱池。
酸性廢水的中和葯劑:石灰CaO、石灰石CaCO3、氫氧化鈉NaOH。
鹼性廢水的中和葯劑:工業鹽酸。優點是反應產物的溶解度大,泥渣量小,但出水溶解固體濃度高。
化學沉澱:廢水中的中重金屬離子、鹼土金屬(鈣、鎂)、某些非重金屬(砷、氟、硫、硼)採用化學沉澱處理過程去除。
化學沉澱工藝過程:投加化學沉澱劑;固液分離;泥渣處理和回收利用。
浮選法:主要用於處理廢水中靠自然沉降或上浮難以去除的浮油或相對密度接近於1的懸浮顆粒。包括氣泡產生、氣泡與顆粒附著以及上浮分離等連續過程。
消毒劑主要有(5種):氯氣、臭氧、紫外線、二氧化氯和溴。
對二級出水去除懸浮物的方法有:化學絮凝後沉澱或氣提、物理法過濾。
用於去除SS的化學絮凝劑有:鋁化合物、鐵化合物、碳酸鈉、NaOH、CO2、聚合物。
水中磷一般三種形式:正磷酸鹽(可被生物直接吸收)、聚合磷酸鹽(水解為正磷酸鹽,過程速度較慢)、有機磷(工業廢水的主要成分之一)。
磷的去除方法有:化學沉澱法(加明礬和氯化鐵降低水pH,加石灰升高水pH)和生物法(A/O工藝過程、A2/O工藝過程、活性污泥生物-化學沉澱過程、序批式間歇反應器SBR)。
廢水中氮的形式(4種):有機氮(溶解態、顆粒態,溶解態有機氮主要以尿素和氨基酸的形式存在)、氨、亞硝酸鹽、氮氣。
控制氮含量的方法(4種):生物硝化-反硝化(無機氮延時曝氣氧化成硝酸鹽,再厭氧反硝化轉化成氮氣);折點氯化(二級出水投加氯,到殘余的全部溶解性氯達到最低點,水中氨氮全部氧化);選擇性離子交換;氨的氣提(二級出水pH提高到11以上,使銨離子轉化為氨,對出水激烈曝氣,以氣體方式將氨從水中去除,再調節pH到合適值)。每種方法氮的去除率均可超過90%。
水體自凈:污染物投入水體後,使水環境受到污染。污水排入水體後,一方面對水體產生污染,另一方面水體本身有一定的凈化污水的能力,即經過水體的物理、化學與生物的作用,使污水中污染物的濃度得以降低,經過一段時間後,水體往往能恢復到受污染前的狀態,並在微生物的作用下進行分解,從而使水體由不潔恢復為清潔,這一過程稱為水體的自凈過程。
㈢ 飲用水的凈化包括哪三種方式
飲用水的凈化包括過濾、軟化、純化三種方式。簡言之就是對水的凈化。水的凈化,是通過相應的過濾材料,根據不同的最終用水需求,以物理或化學的方式,去除水中的鐵銹、泥沙、余氯、有機物、有害的重金屬離子、細菌、病毒等的過程。顯而易見,如果水凈化全程運用的是物理過濾方式,則不會在水中產生或添加任何新的物質,更不會改變水的性狀,因而是最安全的方式,目前在西方國家廣泛採用。水得到凈化,去除了危害人體健康的物質,我們稱之為「凈水」。