A. 定性分析法的方法有哪些
定性分析法的方法包括因果分析法、比較分析法以及矛盾分析法等。
B. 氣相色譜法的分析方法
氣相色譜法的分析方法分為以下幾個步驟:
1、樣品的來源和預處理方法
GC能直接分析的樣品必須是氣體或液體,固體樣品在分析前應當溶解在適當的溶劑中,而且還要保證樣品中不含GC不能分析的組分(如無機鹽),可能會損壞色譜柱的組分。這樣,我們在接到一個未知樣品時,就必須了解的來源,從而估計樣品可能含有的組分,以及樣品的沸點范圍。如能確認樣品可直接分析。如果樣品中有不能用GC直接分析的組分,或樣品濃度太低,就必須進行必要的預處理,包括採用一些預分離手段,如各種萃取技術、濃縮和稀釋方法、提純方法等。
2、確定儀器配置
所謂儀器配置就是用於分析樣品的方法採用什麼進樣裝置、什麼載氣、什麼色譜柱以及什麼檢測器。
3、確定初始操作條件
當樣品准備好,且儀器配置確定之後,就可開始進行嘗試性分離。這時要確定初始分離條件,主要包括進樣量、進樣口溫度、檢測器溫度、色譜柱溫度和載氣流速。進樣量要根據樣品濃度、色譜柱容量和檢測器靈敏度來確定。樣品濃度不超過mg/mL時填充柱的進樣量通常為1-5uL,而對於毛細管柱,若分流比為50:1時,進樣量一般不超過2uL。進樣口溫度主要由樣品的沸點范圍決定,還要考慮色譜柱的使用溫度。原則上講,進樣口溫度高一些有利,一般要接近樣品中沸點的組分的沸點,但要低於易分解溫度。
4、分離條件優化
分離條件優化目的就是要在*短的分析時間內達到符合要求的分離結果。在改變柱溫和載氣流速也達不到基線分離的目的時,就應更換更長的色譜柱,甚至更換不同固定相的色譜柱,因為在GC中,色譜柱是分離成敗的關鍵。
5、定性鑒定
所謂定性鑒定就是確定色譜峰的歸屬。對於簡單的樣品,可通過標准物質對照來定性。就是在相同的色譜條件下,分別注射標准樣品和實際樣品,根據保留值即可確定色譜圖上哪個峰是要分析的組分。定性時必須注意,在同一色譜柱上,不同化合物可能有相同的保留值,所以,對未知樣品的定性僅僅用一個保留數據是不夠的,雙柱或多柱保留指數定性是GC中較為可靠的方法,因為不同的化合物在不同的色譜柱上具有相同保留值的幾率要小得多。
6、定量分析
要確定用什麼定量方法來測定待測組分的含量。常用的色譜定量方法不外乎峰面積(峰高)百分比法、歸一化法、內標法、外標法和標准加入法(又叫疊加法)。峰面積(峰高)百分比法*簡單,但*不準確。只有樣品由同系物組成、或者只是為了粗略地定量時該法才是可選擇的。相比而言,內標法的定量精度,因為它是用相對於標准物(叫內標物)的響應值來定量的,而內標物要分別加到標准樣品和未知樣品中,這樣就可抵消由於操作條件(包括進樣量)的波動帶來的誤差。至於標准加入法,是在未知樣品中定量加入待測物的標准品,然後根據峰面積(或峰高)的增加量來進行定量計算。其樣品制備過程與內標法類似但計算原理則完全是來自外標法。標准加入法定量精度應該介於內標法和外標法之間。
7、方法的驗證
所謂的方法驗證,就是要證明所開發方法的實用性和可靠性。實用性一般指所用儀器配置是否全部可作為商品購得,樣品處理方法是否簡單易操作,分析時間是否合理,分析成本是否可被同行接受等。可靠性則包括定量的線性范圍、檢測限、方法回收率、重復性、重現性和准確度等。
C. 農葯殘留物的分析方法
國外醫學衛生學分冊
1998年 第25卷 第3期
食物中農葯殘留分析方法的研究進展
中國預防醫學科學院營養與食品衛生研究所 (北京 100050)
趙雲峰綜述 陳建民1 王緒卿審校
摘要 本文綜述了近年來農葯殘留分析的前處理技術和測定方法的研究進展,著重介紹固相萃取法、凝膠滲透色譜法和超臨界流體萃取法等前處理技術及氣相色譜-質譜法、液相色譜-質譜法、超臨界流體色譜法等色譜測定方法以及毛細管電泳和生物技術在農葯殘留分析中的應用。
關鍵詞 食物 農葯殘留 多殘留分析方法
食品的農葯殘留分析是在復雜的基質中對目標化合物進行鑒別和定量。由於食品中農葯殘留水平一般在mg/kg~μg/kg之間,因此要求分析方法靈敏度高、特異性強。對於未知農葯施用史的食物樣品,經常採用多組分殘留分析的方法。由於各類食物樣品組成成分復雜,而且不同農葯品種的理化性質存在差異,因而沒有一種多組分殘留分析方法能夠覆蓋所有的農葯品種。
近年來,農葯殘留分析方法趨向於選擇性強、解析度高和檢測限低以及操作簡便。主要表現在由單一種類農葯多殘留分析向多品種農葯多殘留分析發展,而且對農葯的代謝物、降解物以及軛合物的殘留分析給予了更多的關注[1]。本文簡要綜述近幾年來農葯殘留分析技術及方法學的進展。
1 食物中農葯殘留的特點及樣品前處理技術食物樣品組成復雜,基質成分與目標物含量相差懸殊,且存在農葯的同系物、異構體、降解產物、代謝產物以及軛合物的影響。由於環境的遷移作用,環境中殘留的各種化學污染物也可能在農作物組織中蓄積,從而增加了食品農葯殘留分析的難度。農葯殘留測定之前要有適合於各種食品和目標物理化性質的萃取、凈化、濃縮等預處理步驟,這些預處理過程往往在分析中起著主要作用。食物樣品中農葯提取、凈化等前處理方法有其特殊性,對於不同性質樣品中的不同目標物需要採用不同的前處理技術。
食品農葯殘留分析中,食物樣品的凈化要盡可能的除去與目標物同時存在的雜質,以減少色譜圖中的干擾峰,同時避免雜質對色譜柱和檢測器的污染。食物樣品的凈化,尤其是含脂質較多的食物樣品凈化,一直是分析工作者研究的重點,除採用常規的吸附柱分離、液-液分配、共沸蒸餾等凈化措施外,更多的採用現代分離分析技術。
在農葯殘留分析技術發展的歷程中,對氣相色譜(gc)和液相色譜(lc)等各種儀器的分析速度、分辨能力和自動化程度進行了大量的研究,相比之下,對樣品的制備技術關注不夠。在很長的時間內,一直沿用經典的索氏提取、液-液分配、florisil、硅膠、硅藻土及氧化鋁柱色譜、共沸蒸餾等技術,盡管這些技術不需要昂貴的設備和特殊儀器,但卻是整個分析過程中最費時費力、最容易引起誤差的環節,且大量有機溶劑的使用,造成了對環境的污染。進入90年代後,樣品萃取凈化技術有了較快的發展,最受普遍重視的如固相萃取法(spe)、凝膠滲透色譜法(gpc)及超臨界流體萃取法(sfe),得到不斷改進和應用。為此,樣品前處理技術的研究成為分析化學領域中最為活躍的前沿課題之一[2]。
1.1 固相萃取法自美國waters公司的sep-pak投放市場後,固相萃取法(spe)技術取得很大進步,各種c8、c18、腈基、氨基和其它特殊填料的微柱相繼得到應用。schenck[4]用florisil微柱凈化,測定食物中有機氯農葯(ocs)殘留;wan[5]簡化了植物油中ocs殘留分析時硅膠柱的凈化方法,減少了有機溶劑的使用;armishaw[6]比較了動物脂肪ocs殘留測定時,gpc、吹掃共餾、florisil柱色譜的凈化;bentabol[7]用半制備c18柱分離食用油中的ocs和有機磷農葯(ops)。gillespie[8]用多柱spe凈化植物油和牛脂中的ocs及ops,油或脂質樣品用己烷溶解後,首先經diatoma-ceousearth(extrelutqe)柱和c18鍵合硅膠(ods)微柱處理,洗脫液分為兩部分,一份濃縮後,丙酮溶解,用gc-火焰光度檢測器(fpd)測定ops,另一份經氧化鋁微柱處理,進一步除去脂質,用gc-電子捕獲檢測器(ecd)測定ocs。
1.2 凝膠滲透色譜法凝膠滲透色譜法(gpc)是一種快速的凈化技術,應用於農葯殘留分析中脂類提取物與農葯的分離,是含脂類食物樣品農葯殘留分析的主要凈化手段。stienwandter[9]總結了凝膠色譜在農葯殘留分析中的應用;李洪波[10]用交聯聚苯乙烯凝膠(ngx-01)凈化食物樣品中ops;李怡[11]用bio-beadss-x3凈化乳品中氨基甲酸酯類農葯(nmcs)。chamberlain[12]採用10%乙酸乙酯和石油醚洗脫,以bio-beadss-x3解決了脂肪和油樣的分離。hong[13]用溶劑提取,bio-beadss-x3凈化,gc-ecd-氮磷檢測器(npd)測定大豆和大米樣品25種農葯,並用gc-ms-選擇離子監測(sim)確證。florisil、氧化鋁及硅膠柱主要用於非脂質食品凈化處理,採用常規的凈化方法,不能保證極性農葯ops在脂質性食品中的定量回收。sannino[14]用bio-beadss-x3的gpc凈化方法,分析了7個脂質性食品中39種ops及其代謝產物,並進一步進行gc-ms-sim確證和定量。hop-per[15]用gpc凈化,gc測定了穀物中ops、ocs及擬除蟲菊酯;holstege[16]採用凝膠滲透色譜法凈化,進行了43種ops、17種ocs及11種nmcs多殘留分析。
1.3 超臨界流體萃取法繼超臨界流體色譜(sfc)之後,90年代出現了超臨界流體萃取技術(sfe)。常規分析時,需要用有機溶劑提取樣品,提取的樣品量為50~100g,在進行溶劑濃縮的過程中,可能使易揮發的農葯損失或使某些農葯降解。sfe的樣品用量少,樣品提取在低溫下進行,避免了農葯的損失及降解,大大提高了分析方法的可靠性,並使得分析時間縮短,排除了有機溶劑的污染。lehotay[17]建立了食品中農葯多殘留分析的sfe方法;snyder[18]在ocs和ops測定中,比較了用3%甲醇為改性劑的co2凈化與索氏提取法的效率。對於含水量高的樣品,sfe的使用受到限制,為了提高sfe的使用效率,採用凍干樣品和混合樣品,以吸收水分。valverde-garcia[19]用硫酸鎂為乾燥劑吸收樣品中的水分,以sfe提取甲胺磷;用無水硫酸鎂制備蔬菜樣品(硫酸鎂∶樣品=5∶7),用sfe提取辣椒和西紅柿中非極性和中極性農葯。sfe是食品農葯多殘留分析中具有發展前景的新技術,可以替代溶劑提取方法,但在常規分析中還未得到廣泛應用。
2 測定方法色譜法仍是農葯殘留分析的常用方法。對於揮發性農葯常用gc測定;對於揮發性差、極性和熱不穩定性的農葯則採用lc測定。目前,在農葯殘留分析中使用的方法有gc、高效液相色譜法(hplc)、氣相色譜-質譜法(gc-ms)、液相色譜-質譜法(lc-ms)、sfc及毛細管電泳法(ce)和酶聯免疫吸附測定法(elisa)等。fodor-csorba[20]綜述了食物中農葯分析的色譜方法,概括了薄層色譜法(tlc)、gc、sfc及hplc在食物樣品分析中的應用;leim[21]總結了脂類食物中有機農葯的分析方法;sharp[22]總結了穀物中ops、擬除蟲菊酯和nmcs的提取、凈化及測定方法;torres[23]總結了水果、蔬菜中農葯殘留的測定方法;宮田晶弘[24]用gc、gc-ms-電子轟擊源(ei)及gc-離子阱質譜(itms)-化學電離源(ci)測定蘋果、香蕉、小麥及大米中的41種ops、23種nmcs,並對三種方法進行了比較。色譜法在農葯殘留分析中發揮了重要的作用。
2.1 gc法和gc-ms法以非極性或弱極性為固定相的毛細管柱gc得到廣泛使用,取代了傳統的填充柱gc。gc-ms和gc-ms-ms聯用技術日臻成熟,質譜法已成為農葯殘留分析的常用方法。由於串聯質譜(ms-ms)可以減少干擾物的影響,提高儀器的靈敏度,所以ms-ms是化合物結構分析及確證的有效手段。由於gc-離子阱的串聯質譜用於農葯殘留分析時,可得到fg水平的靈敏度,所以離子阱技術將是農葯殘留分析發展的趨勢。lehotay[25]用sfe提取,gc-itms分析了水果、蔬菜中ocs、ops、氨基甲酸酯類農葯(mcs)、擬除蟲菊酯及其它農葯,共46個品種。py-lypiw[26]用gc-單離子檢測(msd)分析了18種ocs,最低檢出量為10μg/kg;valaerd-garcia[27]用gc-msd檢測了蔬菜中噻嗪酮的殘留;fillion[28]用乙腈提取水果、蔬菜樣品,鹽析分層,活性炭柱凈化,用gc-msd分析了189種農葯殘留,並用hplc的熒光檢測法測定了10種氨基甲酸酯農葯殘留。hogendoorn[29]用改良方法分析了2000個水果、蔬菜樣品中125種農葯。miyahara[30]用sfe凈化,gc-itms測定了蔬菜中五氯硝基苯(pcnb)及代謝物的殘留;採用sfe與gc-itms聯用檢測蔬菜中六氯苯(hcb)的殘留。但是,gc-itms用於常規的定量測定還有待進一步發展。
2.2 hplc法及lc-ms法對於受熱易分解或失去活性的物質,不能直接或不適合用gc分析。正是由於許多有機化合物的強極性、熱不穩定性、高分子量和低揮發性等原因,從而推動了液相色譜技術的進步。
農葯殘留分析中,通常使用c8及c18反相高效液相色譜法,而以硅膠、腈基、氨基為極性鍵合相的色譜柱則用於特定的分析;短柱或小口徑柱可提高分析速度。除採用固定波長或可變波長的紫外檢測器外,二極體矩列紫外檢測器和質譜檢測器可用於結構鑒定。
hplc與sfe聯用可以提高分析方法的選擇性,並使凈化與分析過程結合,減少中間步驟造成被分析組分的丟失。hplc與ms聯用研究起步於70年代,與gc-ms相比,lc-ms的銜接更為復雜,目前lc-ms聯用已出現多種介面方式,如電噴霧介面(es)、熱噴霧介面(ts)、離子噴霧介面(is)、大氣壓化學電離介面(apci)以及粒子束介面(pb)。lc與快原子轟擊質譜(fab-ms)以及傅立葉變換紅外光譜聯用技術(ftir)在農葯殘留分析中也得到應用。
hplc和lc-ms廣泛應用於不易揮發及熱不穩定化合物的分析,是農葯殘留定性、定量分析的有效手段,尤其是氨基甲酸酯農葯(mcs)的檢測。yang[31]總結了nmcs殘留分析的進展;krause[32]建立了氨基甲酸酯的熒光測定法,食物樣品用甲醇提取,乙腈-二氯甲烷液液分配,活性炭-celite柱凈化,反相lc分離,鄰苯二醛衍生,檢測限為5~50μg/kg,結果用ms確證。seiber[33]採用perfluorracyl衍生,分析了穀物中的氨基甲酸酯;lau[34]用trifluoroacetyl衍生分析了穀物中的混殺威;bakowski[35]用heptafluo-robutyryl衍生,用gc-eims測定了肝組織中10種苯基-n-甲基氨基甲酸酯;ali[36]對牛肉、豬肉和家禽組織的氨基甲酸酯進行分析。liu[37]等用lc-ms對水果、蔬菜中的涕滅威、增效碸等19種農葯進行檢測,檢測限為0.025~1mg/kg。newsome[38]比較了lc-apci-ms和lc-柱後衍生熒光法測定食品中nmcs,在10~100μg/kg范圍內,兩種檢測器的檢測結果良好,但由於兩種均為非特異性檢測器,都存在基質干擾,為了准確測定含量,應使用高分辨的ms進行確證。
2.3 sfc方法sfc是以超臨界流體為流動相的色譜方法。超臨界流體既具有液體的強溶解性能,適合於分離揮發性差和熱不穩定的物質;又具有氣體的低粘度和高擴散性能,傳質速度快,使得分析速度提高;同時,sfc可以使用gc或hplc的檢測器以及與ms、傅立葉變換紅外光譜儀(ftir)聯用。毛細管超臨界流體色譜(csfc)的進展,促進了sfc技術的進步。csfc-ms是近年來發展的聯用技術,由於csfc克服了gc和lc的不足且具有二者的優點,所以csfc-ms聯用較gc-ms和lc-ms聯用有更多的優越性。csfc-ms主要用於大分子量、熱不穩定的復雜混合物分析,尤其對熱不穩定的物質,不能用gc直接分析,而lc的選擇性和靈敏度又不夠,如採用csfc-ms,可較方便地分離檢測。農葯中含有s、p等雜原子時,極性較強,用gc和lc難於分析,痕量分析尤為困難。採用cs-fc結合選擇性強的檢測器,如fpd、npd、ecd等,是農葯痕量分析的理想方法。在co2中添加1%甲醇作為改性劑,使極性農葯得到很好地分離,消除了色譜峰的拖尾。但是農葯殘留分析中,sfc主要用於非極性或弱極性的物質,如何分析極性物質,將是今後的研究方向[39]。
2.4 tlc方法tlc無需特殊設備,簡便易行,可同時分析多個樣品,多用於復雜混合物的分離和篩選。tlc除用特殊的顯色劑觀察斑點顏色和用rf值定性外,與其它技術的聯用不僅可以定性,而且可對樣品中被分離的一種或多種成分進行定量分析。80年代發展起來的高效薄層色譜法(hptlc)與掃描技術結合,是一種易於建立和掌握的半定量技術。歐盟國家採用自動化多通道展開技術,用hptlc定量篩選了飲水中256種農葯殘留。
2.5 ce方法由於ce具有分離效率高、快速、樣品用量少等特點,近年來得到了迅速發展,各種分離模式相繼建立,高性能的商品儀器不斷推向市場。對於無電荷的分子,開發了膠束電動色譜法(mekc),拓寬了ce的應用范圍。毛細管電泳與質譜聯用(ce-ms)可用於穀物和其它基質中帶電荷基團的農葯及其代謝物殘留檢測。ce可與原子分光光度法聯用[2],如與原子吸收分光光度計(aas)、電感耦合等離子體-原子發射光譜儀(icp-aes)和icp-ms聯用。cancalon[40]綜述了ce和ce-ms在農葯殘留分析中的應用。
2.6 生物技術生物技術在農葯殘留分析中的應用不斷增加,尤其是乳製品工業[41]。生物技術包括免疫測定法、生物測定法和生物感測器技術及免疫親和色譜法。免疫測定法取決於抗體與底物的相互作用,目標物與抗體結合後,酶促反應產生顏色變化,用比色法測定目標物濃度。kramer[42]總結了生物感測器和免疫感測器的構件、技術特點及其應用。
抗體與抗原的特異結合為農葯殘留分析提供了技術保證,許多市售試劑盒的應用,使免疫測定成為各類農葯殘留檢測的有效手段,使農葯殘留分析時間縮短,操作人員勞動負荷量減少。免疫方法常與其它技術聯用[43],如elisa與傳統的提取和凈化方法、sfe、hplc及gc-ms聯用;免疫親和色譜法與ms聯用以及在機器人輔助下自動的免疫化學方法都有應用報道。有報道[41]用sfe-elisa分析了大麥中殺螟硫磷、甲基毒死蜱及甲基嘧啶磷;用hplc-elisa測定水果、蔬菜中噻菌靈。由於免疫分析成本低、快速、可靠,且感測器靈敏度高,並有自動化裝置,因而廣泛用於農葯殘留的監測及人與環境接觸等研究。
3 結 語
隨著各種新技術的應用,農葯殘留分析方法日趨系統化、規范化,並向小型化、自動化方向發展。同時,由於在線聯用技術可避免樣品轉移的損失,減少各種人為的偶然誤差,因此將是農葯殘留分析方法研究的重點。
D. 葯典中 常用的滴定分析法的使用范圍
葯典中 常用的滴定分析法有以下幾種,還有他們的使用范圍。
滴定分析的主要方法有:
①根據滴定分析的方式不同,滴定分析法可分為:(1)直接滴定法。(2)間接滴定法。(3)返滴定法,又稱剩餘量滴定法或回滴定法。(4)置換滴定法。②根據滴定反應類型的不同滴定分析法又可分為:(1)酸鹼滴定法,又稱中和法。(2)配位滴定法,舊稱絡和滴定法。(3)氧化還原滴定法。(4)沉澱滴定法。
滴定分析法作為標准分析方法之一,被廣泛應用在醫葯行業:進行簡單,快速,具有重現性和准確性的有效成分,葯品及其原料的分析(含量測定)。滴定尤其適合於生產過程中的質量控制和常規分析。以下為一些主要的應用:
1. 具有葯物活性物質的純度分析
滴定主要用於測定葯物活性成分的含量,如:阿斯匹林中的乙醯水楊酸或復合維他命片劑中的維生素C,以及用於葯物合成的葯物添加劑的含量測定和純度控制。酸鹼中和反應等酸鹼滴定是醫葯行業用得最多的滴定。一個典型的例子就是鹽酸麻黃鹼的純度控制[1]。該成分通常出現在咳嗽糖漿中,用以治療支氣管哮喘。其含量的測定是在含有無水醋酸和醋酸汞的有機溶劑中,用高氯酸作滴定劑進行滴定:
2R-NH3+-Cl-+Hg(OAc)2 =2R-NH2+HgCl2+2HOAc
R-NH2+HClO4 =R-NH3+-ClO4-
2.用氧化還原滴定進行成分分析
氧化還原滴定通常被用來檢測原料、填充物和防腐劑的純度。例如,4-苯甲酸甲酯(一種對羥基苯甲酸酯)中溴值的測定。這種化合物作為防腐劑被應用於眼葯制劑和外用眼葯膏中。硫代硫酸鈉被用作滴定劑。整個分析由下述幾個步驟組成:
2.1 酯與氫氧化鈉的皂化作用(水解)
2.2 羥基氧化到酮基的過程
2.3 苯環的(親電)溴化
2.4 過量的溴與碘離子反應,生成滴定過程中所需的游離碘
2.5 碘經硫代硫酸鹽滴定, 還原成碘離子:I2+2S2O32-=2I-+S4O62-
3.沉澱滴定
某些葯品由於其結構的關系,在滴定過程中會有沉澱析出。例如,氯化亞苄翁。通常用四苯基硼酸鈉或是十二烷基磺酸鈉作為滴定劑,用梅特勒-托利多DS500表面活性劑電極或是DP550光度電極就可以進行滴定。
@夫唯不爭
4. 恆pH滴定
恆pH滴定主要用於鑒定葯品、檢測酶製品純度以及研究化學反應動力學。恆pH表示pH值恆定,即在某一特定時段內保持pH值恆定。這項技術尤其被用於測定諸如酶的活性等反應動力學參數。
生成或消耗H+的酶反應可以通過pH電極來跟蹤。這些生成或被消耗的H+可以通過分別添加一定量的鹼或酸來中和,由此來控制使pH值恆定。滴定劑的添加速率與被測樣品(如酶)的反應速率成正比。脂肪酶的活性測定就是一個很典型的例子。恆pH滴定在制葯工業中的另一個應用領域則是用來測定解酸葯[2]的緩沖能力。解酸葯作為治療用劑被用來中和由胃炎引起的胃酸過多或是由腸功能紊亂引起的腸酸過多。這類抗酸劑有氫氧化鎂,氧化鎂,碳酸鎂,硅酸鎂,氫氧化鋁,磷酸鋁和硅酸鋁鎂等。解酸葯必須要能夠在大約一個小時的平均停留時間內保持胃部或腸部內的pH值恆定。這就意味著測定反應速率、酸中和能力、緩沖能力等特性是非常重要的。
5. 卡爾費休水份測定
葯品中的水份含量是葯品檢驗指標之一,因為它關繫到葯品的活性/葯效以及存儲有效期。當葯品中的水份含量過高或過低時,葯品中的有效成分會降解或是達不到其最高活性點。從而降低葯劑的有效性。另外,水份含量亦會從很大程度上影響葯品的存儲有效期。專用於水份測定的卡爾費休方法是經過長期實踐後確立的常規方法[4、5、6]。水份含量可以通過葯品與碘在乙醇溶液中反應直接測得。
幾個百分比的水份含量可以通過添加含有碘的溶液由容量法進行測定(容量法卡爾費休水份測定,[4])。用容量法卡爾費休水份測定的一個典型例子就是測定阿司匹林中的水份含量。經硯磨的阿司匹林粉末轉移至滴定容器後可以直接進行滴定,測得水份,樣品溶解後,阿司匹林中的活性成分水楊酸會使溶液的pH值降低而影響卡爾費休水份測定結果。在這種情況下,需要加入咪唑來中和水楊酸,使pH值保持在最佳值pH6-pH7之間。
對於水份含量低於0.5-1.0%的情況,測定所需的碘量可以由滴定容器中電解產生。(庫侖法水份測定[5、6])。用庫侖法卡爾費休水份測定的一個典型例子就是測定凍干樣品中水份含量.由於經過凍干處理的物質的水份含量極低(ppm數量級),樣品需要在經過預滴定至無水狀態的陽極液中溶解後再直接滴定。
@夫唯不爭
在卡爾費休滴定中只有游離水才能夠被測得,故而對樣品進行適當的預處理就顯得尤為重要。在卡爾費休水份測定之前,使得樣品中的水份處於游離水狀態是相當必要了。可以通過如下方法實現這個目的:在滴定池中長時間充分地攪拌樣品;減小樣品顆粒的大小;樣品均質化;對樣品進行加熱;用溶劑對樣品進行外部萃取等等。
同時,對於不溶或難溶物質、與卡爾費休試劑發生副反應的物質或是釋放水份特別緩慢的物質,在測定時建議使用乾燥爐。乾燥爐的熱能使得樣品的水份釋放出來,然後通過乾燥的惰性氣體吹入滴定容器。如果使用乾燥爐,則樣品需為對熱穩定的物質。
為提高效率,所有費時的步驟都可實現自動化:
要滴定幾個系列的樣品和定期的取樣都是費時費力的,因為用戶必須重復進行每一步的操作。此外,由於操作過程必須嚴格按照標准程序進行,操作者會感到單調乏味。這些問題都可以通過提高常規工作的自動化程度來解決。
E. 高效液相色譜儀器使用方法
一、脫氣
流動相脫氣對於避免HPLC系統出問題,順利得到一個理想的數據是一個很有效的措施。HPLC系統內是不希望有氣泡存在的。HPLC泵在輸送液體時要產生很大的力量,由於氣體的壓縮比與液體相比大的多,因而當氣泡存在時,你將觀察到瞬間的流速降低和系統壓力下降。如果這個氣泡足夠大,液相泵將不能輸送任何溶劑,而且如果壓力低於預先設定的壓力低限,泵將停止工作。有些泵設計可以很好地排除氣泡,而也有一些泵設計當氣泡存在時將停止運轉。
當一個氣泡通過輸液泵時,由於系統壓力大,氣泡通常會溶解在流動相溶液中,隨流動相通過柱子。但是到達檢測器流通池時系統壓力又恢復到了大氣壓,因而氣泡可能在檢測器流通池中又顯現,在色譜圖上會出現不規律的毛刺。為解決這個問題,有些儀器公司設計一個反壓控制器,這樣可以在檢測器出口提供足夠的壓力保持氣泡始終溶解在流動相中直到它們流出檢測器。當然,這個壓力不能超過流通池所能承受的壓力極限,否則可能損壞檢測器。
紫外/可見光(UV/VIS)檢測器的液相色譜圖中的噪音毛刺通常是氣泡進入並通過流通池的徵兆。有些檢測器對空氣的存在也非常敏感,但表現出的徵兆與UV/VIS不同,例如有報導說,當使用熒光(FL)檢測器時,流動相中溶解氧的存在可能會使一些化合物失去熒光性。此外,對於利用待測物質在電極表面發生氧化還原反應引起電流變化而進行檢測的電化學(EC)檢測器,對流動相中的溶解氧的存在也非常靈敏。此外,氣泡的存在有時還會導致保留時間不重現。
所以,必須注意消除流動相中的空氣,並且還應避免空氣由管路(如PTFE管)滲透進流動相中。
如果適當地關注在使用之前脫去流動相中溶解進的空氣,上述這些問題均能避免,或把影響降至最低。常用的脫氣方法有如下幾種:
1、吹氦脫氣法:利用氦氣在液體中溶解度比空氣低的特性,在0.1MPa壓力下,以約60 mL/min流速通入流動相儲液容器中10~15min,可以很有效地從流動相中排除溶解的空氣,能排除接近80%的氧氣。採用一個高效分布式噴射流裝置,一體積的氦氣可從流動相中將等體積的幾乎全部氣體排除。這意味著1L氦氣通過1L流動相就可完成排氣這個工作。這種脫氣方法雖然好,但我們國內氦氣價格較高,很少有實驗室採用此方法。
2、 加熱迴流法:此法的脫氣效果較好。在操作時要注意冷凝塔的冷卻效率,否則溶劑會丟失,混合流動相的比例會有變化。
3、 抽真空脫氣法:此法可使用真空泵,降壓至0.05~0.07MPa即可除去溶解的氣體。但是由於真空脫氣會使混合溶劑組成發生變化,從而影響到實驗的重現性,因此多用於單溶劑體系的簡單分析。
4、超聲波脫氣法:將欲脫氣的流動相置於超聲波清洗器中,用超聲波震盪10~20min。此法的脫氣效果zui差。
5、 在線脫氣法:現在商品的HPLC儀器,均可配在線脫氣機。在線脫氣使用簡單,低故障,有效。建議購買儀器時一定要購買,有的公司是作為選購件,所以與儀器公司談配置時應與公司確認。
二、過濾
任何顆粒物進入HPLC系統後都會在柱子入口端被篩板擋住,zui後的結果是將柱子堵塞,表現出的特徵是系統壓力增加並使色譜峰變形。因此,要採取各種預防措施,包括操作步驟和商品儀器自身的各種過濾設計,努力防止或減少顆粒物進入HPLC系統中,從而延長儀器和色譜柱的使用壽命,並提高數據的可靠性。在HPLC系統中,顆粒物的主要來源有三個途徑:流動相、被測樣品和儀器系統部件的磨損物。
1、流動相如果流動相均由高效液相色譜級溶劑組成,流動相沒有必要過濾。這是因為高效液相色譜級的有機溶劑,例如乙腈、甲醇等,在製造的工藝過程中都已經過了0.2 µm微孔濾膜過濾。同樣的,無論你是買的HPLC級的水還是在實驗室使用超純水凈化系統制備的水,最後一步也是通過0.2 µm微孔濾膜。
然而,如果有任何一種緩沖液中加入了固體物,例如磷酸鹽,流動相過濾將是必要的一個步驟。雖然緩沖鹽可能是可溶解的、高純的,但它還是可能含有顆粒物質,例如在蓋試劑瓶的塑料內蓋時,塑料瓶蓋子與瓶口邊緣擠壓就會產生塑料顆粒。在這種情況下,添加的一種固體物可能完全溶解了,但是少量雜質顆粒存在於流動相中成為殘渣。
流動相通過0.45 µm微孔濾膜過濾對於從流動相中除去所有顆粒物是一個有效方法。0.2 µm微孔濾膜也可以用,但是它們就這個應用而言並不比0.45µm微孔濾膜更有效,而且它的過濾速度會更慢,特別是當實驗室使用的試劑和水的質量不太好時。建議實驗室在編寫制定他們流動相制備標准操作程序(SOPs)時規定,可以借鑒國際上同類實驗室的規定,即:
流動相制備僅採用HPLC級液體時不需要過濾,反之所有流動相組成在使用前必須過濾。
在連接儲液瓶和泵的輸液管的末端入口採用下沉式過濾器(常見材質有熔融玻璃砂芯濾板和微孔金屬的兩種)也是很重要的。這個過濾器的規格為≥10 µm的微孔物質,所以它不能取代流動相過濾步驟,但是它能除去系統中的塵土並保證儲液瓶、輸液管使用的可靠性。
2、被測樣品液相系統中的第二個顆粒物來源是被測樣品。一些實驗室在將他們的樣品放置在自動進樣器盤(或手動進樣)以前,所有樣品都先通過一個0.45 µm針筒式過濾器過濾。這是一個有效除去被測樣品中顆粒物的方法。
但是這個過程也有一點需要關註:你使用了針筒式過濾器就不可能100%得到通過過濾器的被測樣品,總會有或多或少的丟失。丟失來自這樣幾方面:過濾器濾膜的吸附、過濾器濾出的顆粒物上的吸附、針筒式濾膜過濾器與針筒連接處的滲漏等。如果有丟失,過濾後液體中被測物的含量或濃度與原基本樣液的含量或濃度還相同嗎?
這個問題一般需要通過實驗確認。確認這步是要增加工作量和費用的。過濾器的使用是一種消耗,每個過濾器的價格從幾元到十幾元。但在做食品中殘留物分析時,由於基質大多比較復雜,所以過濾這步已成為不可或缺的一步。在實際分析工作中,一般檢測每一組樣品會帶一個外標、一個添加回收或是質控樣品,所以,只要zui終檢測時得到的信噪比能滿足檢出限要求,可將這步視為系統誤差而忽略。
3、儀器系統部件的磨損物最後,在HPLC系統中顆粒物的另一個主要來源是輸液泵密封墊和進樣閥旋轉軸的磨損。關於輸液泵密封墊的磨損更換有兩種不同建議。
一種建議認為,在一般實驗室中輸液泵密封墊通常使用壽命為六個月到一年,因此建議半年或一年更換這些密封墊,實驗室應基於上述觀點制定定期預防性維護計劃。該觀點認為:與輸液泵密封墊顆粒堵塞柱子而更換新柱子的費用相比,更換密封墊的費用低些。一些輸液泵有玻璃砂芯或篩網,可在流路中濾掉從泵密封墊磨損下來的顆粒物,防止這些顆粒物隨流動相流至柱頭。若有這種裝置應查閱輸液泵操作手冊,查看推薦的這種過濾器清洗或更換的間隔。
另一種建議則認為,原裝密封墊的密封效果最好,更換以後容易引起流動相滲漏。所以,只要不漏液就不要輕易更換密封墊。
兩種說法都有其道理,具體如何操作,建議與儀器公司工程師溝通,各公司的儀器還是有些不同的。
自動進樣器旋轉軸的密封隨著使用時間也會磨損,但是在我的經驗中,即便是高負荷的運轉旋轉軸密封墊也可以使用幾年。如果你的自動進樣器系統有計數進樣閥轉動次數的功能,你可以設定一個警鈴當預設閥轉動次數已達到時提醒你。
曾有一種說法,進樣器最多轉動20,000次,這僅僅是進樣10000個;但這似乎不是實驗室涉及的常規樣品分析使用壽命,它們的實際使用壽命會更長。旋轉軸密封磨損後會滲液,比較明顯的特徵是同一樣品多次進樣後,峰面積值差別比較大(RSD>5%)。當然,輸液泵的密封墊和旋轉軸的密封墊磨損將增加更多研磨物在流動相中,加速對這些部件的損傷。
此外,如果你日常運行的流動相有緩沖鹽,如磷酸緩沖鹽,密封墊的磨損會更快。無論顆粒物源於何物,實驗時都要將其除去。推薦在HPLC系統中採用一個0.45或0.5 µm的在線多孔過濾器,接在自動進樣器和柱子之間,即使已使用了保護柱。這個在線過濾器將成為擋板代替柱頭的濾板,而且如採用一個玻璃砂芯濾板,既便宜,更換又方便(幾分鍾就可更換)。若採用在線過濾,HPLC系統檢測每批樣品開始前記錄下壓力值,當壓力上升一定值,例如25%或增加500psi,應該更換玻璃砂芯濾板了,更換以後沖洗幾分鍾系統將恢復到原來的壓力值。
三、沖洗
使HPLC系統良好運行的第三個要點是保持系統的清潔。你需要關注流動相流經該系統的所有地方,對於這些地方經常性的沖洗,將使你的系統保持在「Ready」狀態。
1、流動相儲液瓶首先要經常清洗流動相儲液瓶,或者每做一批新樣品更換一次流動相。一個臟的儲液瓶將會污染注入的流動相。建議儲液瓶中緩沖液使用時間不要超過一周,而有機溶劑使用時間不要超過一個月。
也有人建議儲液瓶中保持用溶劑充滿,直到更換分析方法儲液瓶需更換新溶劑(流動相組成發生變化)時,將舊溶劑倒掉更換新溶劑,這樣勝於將溶劑用完。但這對於分析樣品量少的實驗室而言似乎有些浪費。儀器公司的工程師建議儲水瓶的水要天天換,每周瓶子還應該用異丙醇清洗一次。有的實驗室則在水裡加入0.1~1 mM的甲酸抑制微生物的生長。這些做法看起來有些繁瑣,但卻能起到「磨刀不誤砍柴工」作用。
2、泵接下來要沖洗的是泵。千萬不要一分析完沖幾分鍾後就停泵,特別是當流動相中含有難揮發的緩沖液(如磷酸鹽)時。如果儀器不是連續使用,當流動相蒸發時,難揮發物就會粘在活塞密封墊的表面,難揮發物將形成固形物沉澱。這是泵密封墊磨損和單向閥滲漏的主要原因之一。所以,無論使用長短,在停泵以前一定要用非緩沖液流動相沖洗泵在半個小時以上,要是流動相中有難揮發緩沖鹽則建議沖洗的時間應該更長些。
3、自動進樣器自動進樣器也要按規定清洗。現在的儀器多配有自動進樣器的沖洗液瓶,通常只要注意及時更換、補充沖洗液即可。自動進樣器用的洗滌液也要採用與流動相相同的方式處理,並根據溶劑的有效期和規定,清洗儲液瓶或更換洗滌液。現在的自動進樣器設置、操作都很簡單,如果時間允許(特別是利用夜間運行),每次分析完後設置進1、2針純溶劑(如甲醇、乙腈),也是一個好做法。
4、色譜柱對柱子的污染是隨使用時間而增加。通常表現是:運行走基線時在記錄的色譜圖中基線噪音增加,泵壓也增加。解決這個問題的zui有效方法就是在每一批樣品分析結束後或准備卸下柱子時用大量的流動相沖洗柱子(例如,甲醇、乙腈和水)。用梯度沖洗效果更好,具體的比例要根據柱子的說明書和性質而定。
5、檢測器如果是正常使用,檢測器將依據其性質並按照說明書規定進行洗。例如UV/VIS檢測器或FL檢測器,在對柱子和系統進行沖洗時也就一同對檢測器流通池中污染物進行了清洗。但是蒸發光檢測器或質譜儀則需要按照說明書進行定期清洗。這些檢測器在使用時會有難揮發污染物沉積,如質譜儀離子源的噴針、毛細管、錐孔板、預四極等部件,因而需要定期清洗。而且對聯有這些檢測器的系統沖洗時,最好與這些檢測器斷開,以減少對檢測器的污染。
總之,實驗室日常使用的液相色譜儀要是能認真做好這三項工作——脫氣、過濾和沖洗,你的儀器可以得到良好的預防性維護,使用時就會感到比較順手。當然,在實際操作時遇到的問題並沒有這么簡單,但這三個良好習慣將是正確操作、使用HPLC系統的基礎。答案來自
F. 如何保護色譜柱延長使用壽命
一、使用前准備
1、使用前認真閱讀色譜柱的說明書,了解色譜柱的種類,選用合適的色譜柱。
在選用色譜柱時,應充分考慮所分析樣品的極性大小、化合物的種類數量、結構特徵。根據化合物的性質,選擇合適的型宴色譜柱和分析條件。不同類型的色譜柱使用的流動相不同,使用錯誤的流動相會降低柱效,損傷柱子。如分析極性較大的多糖類成分,應當採用親水性的反相填料。對於首次使用的色譜柱,還應按照廠家的出廠說明對色譜柱進行低流速的沖洗活化,活化後的色譜填料共價鍵鍵合力增強,柱效提高,壽命延長。
2、樣品的准備與預處理
我們的經驗是樣品純化得越干凈,色譜柱的使用壽命越長。許多樣品,尤其侍租指是生物樣品,組份非常復雜,對色譜柱的損傷性較大,不經預處理的樣品直接分析,會嚴重縮短色譜柱的使用壽命。因此,在樣品的准備時需對樣品進行預處理,包括准備溶劑的選擇、樣品過濾等。
2.1 制樣溶劑的選擇
制樣溶劑通常需要考慮樣品的溶解性、與流動相的相溶性、色譜填料的適用性等方面。這類溶劑需對樣品有較大的溶解性,而且與流動相溶,洗脫強度最好低於流動相或梯度洗脫中的起始流動相,以免影響樣品分離。目前許多手性色譜柱都禁止使用DMSO、四氫呋喃、氯仿等溶解樣品,這些溶劑會破壞固定相的結構,從而縮短色譜柱的使用壽命。此外,制樣溶劑還應與色譜系統其他部件如高壓泵、進樣器等相適用。
2.2 制樣溶劑過濾
在進樣前需過濾樣品溶液,如採用0.22μm的微孔濾膜除去不溶性微粒,以免堵塞柱頭濾片及柱內填充床。在條件允許的情況下,最好採用與色譜柱同種填料的固相萃取柱過濾進樣溶液,可以減少在色譜柱上死吸附的物質或易堵塞的大分子樣品。如生物樣品中的小極性的油脂類易於沉澱死吸附在C18反相色譜柱中,導致柱效降低、柱壓升高。採用SPE柱過濾後,可以有效減少在色譜柱中附著沉積的死吸附成分,保護色譜柱不被污染,保證其使用壽命。
2.3 其他,如溶液濃度、進樣量等
分析物的某些性質同樣能影響色譜柱的使用壽命。強酸、強鹼性物質和蛋白質類生物大分子,它們能與固定相填料作用,或生成不可逆吸附層,改變填料表面特徵,使色譜柱性能發生變化,最終導致分離失效。此外樣品的進樣量過大、超載都會影響色譜柱的分離性能和使用壽命。
二、使用過程中的維護
1、流動相的使用和分析方法的選擇
流動相的純度、溶劑的選擇、適當分析方法的使用與色譜柱的性能和壽命密切相關。
1.1 流動相的選擇
所選用的流動相應與色譜柱、待分析樣品相兼容,即樣品、樣品溶液和流動相是互溶的。流動相能夠溶解樣品,避免樣品沉澱析出;同時還要求流動相與樣品不發生化學反應,並且要求與色譜柱不能發生溶解或化學反應。
色譜分析應選擇色譜級的流動相。通常分析純的溶劑含有微量雜質,如有機溶劑中的聚乙二醇、無機鐵離子(Fe+)等,作為流動相大量使用後會引起色譜柱性能變化。最好是使用色譜純級或者更高純度的試劑,盡量降低溶劑中雜質帶來的損傷。
1.2 流動相過濾
使用色譜純試劑配製流動相,使用前需經0.45μm或者更小孔徑的濾膜過濾和超聲脫氣處理,減少灰塵、微生物等雜質堵塞色譜柱,尤其是水溶性流動相易引起微生物生長而造成色譜柱阻塞。流動相最好是現配現用,放置時間最好不要超過2天。
1.3 流動相的pH和緩沖鹽的選擇
極端pH的流動相會破壞填料內的共價鍵,「溶解」硅膠,使固定相流失,從而降低柱效,縮短使用壽命。以硅膠作基質的固定相一般要求pH在2.5~7范圍內使用。長期在pH>7或pH<2使用環境中,硅膠會逐漸溶解或者表面鍵合的官能團會逐漸流失。如果一定要用高或低pH的流動相,最好是選用相適應的色譜填料。
1.4 流速的控制
目前粒徑為1.8μm的UPLC的流速常設為0.3~0.5mL/min,粒徑為5μm的HPLC分析流速不大於1.5mL/min,粒徑為10μm半制備柱流速控制在3mL/min。流速過大,壓力升高,會引起色譜填料沖垮、塌陷。
2、色譜儀器的操作
每次開機使用分析儀器時,泵啟動太快,流速和柱壓的瞬間升高,柱床受到沖擊,引起紊亂,產生空隙,影響色譜柱的使用壽命。因此,在操作實驗開始時,應當將流速和柱壓逐漸增加。
3、保護柱的使用
「保護柱」是與所使用液相色譜柱相同填料的短型色譜柱,可以有效地阻攔容易損壞色譜柱的大分子和不溶性顆粒,過濾易沉著色譜柱上產生死吸附的物質,從而延長色譜柱使用壽命。
4、柱溫的控制
不同類型的色譜柱耐受的溫度各有差別。通常色譜柱老配溫維持在10~40℃之間,能夠充分、最優的發揮色譜柱的性能。超出色譜柱溫度范圍,尤其高於柱溫范圍,會增加對流動相中化學物質的吸附,引起色譜柱固定相結構的改變;此外,還可能引起柱床塌陷,改變峰形,降低柱效,產生不可逆性的損傷。
三、使用後的清洗與保存
柱子使用一段時間後,總會有一些雜質累積在柱內,保留值較弱的物質,一般能快速從色譜柱沖洗出來,不產生干擾;中等保留強度的雜質能被緩慢沖洗出來,但對分析產生一定的干擾;強保留雜質通常聚集在柱頭或色譜柱中,難以被洗脫,甚至可能與填料發生相互作用,形成新的偽固定相,改變色譜柱的分離性能。通常表現為柱壓升高、基線不平、色譜雙峰、分離性能降低等。這些被污染的色譜柱經清洗後,可恢復部分甚至大部分離能力。因此使用後認真、定期清洗,不僅能延長色譜柱的使用壽命,節省資源,還能大大降低分析的成本。以我們常用的硅膠基質色譜柱為例,簡要闡述常用色譜柱的清洗與再生。
1,色譜柱的清洗與再生
色譜柱的使用前後都需經較強的流動相沖洗。通常情況下,在使用硅膠、氧化鋁、極性鍵合相色譜柱時,每次用完後可先用二氯甲烷或正己烷等溶劑低流速長時間的沖洗;鍵合反相硅膠色譜柱、離子交換色譜柱和凝膠色譜柱可先用高比例的水(甲醇水混合溶劑)沖洗,再用100%甲醇沖洗。此外,色譜柱低流速的反相沖洗能夠有效除去堵塞在柱頭或篩板上的雜質,以及清洗聚集在柱頭部位的較強吸附物質。有些色譜柱在許多方法處理污染失效後,反過來使用,不僅柱壓降變小,柱效也可恢復如,延長了色譜柱的使用時間。
若上述常規清洗法無法清除污染物,則有必要採用更強的洗脫劑清洗,如反相材料的沖洗順序為:100%甲醇→100%乙腈→乙腈∶異丙醇(75∶25,V/V)→100%異丙醇。或者可以採用較低濃度的稀酸或稀鹼可將有機溶劑不能洗脫的污染物除去。例如採用0.05mol/L的硫酸和流動相溶液沖洗色譜柱,可取得良好效果;或者採用1%氫氧化銨或50%二甲基甲醯胺水溶液,對聚集在柱頭的污染物具有良好的清洗效果。
如果分析時流動相中含有緩沖液(通常為鹽溶液),沖洗時宜用水取代緩沖液與有機相混合沖洗色譜柱(20倍柱體積);再用100%有機溶劑沖洗。若直接用100%有機溶劑沖洗,可造成緩沖液沉積析出,從而損壞柱子品質。同樣的,若流動相中加入酸、鹼溶液時,也應當按照上述方法,先採用高比例的水(水:甲醇10:90)沖洗20倍柱體積,防止強酸強鹼溶液導致硅膠基質填料的溶解。
蛋白質對反相色譜柱的污染已成為常見問題,尤其在分離未經處理的動物組織等生物樣品。一般情況下,純有機溶劑如乙腈或甲醇不能很有效地清洗色譜柱,因而需要一些特殊的清洗方法。首先嘗試用高比例強極性溶劑的流動相進行沖洗,如乙腈∶異丙醇(1:2,V/V);或使用0.1%的三氟乙酸水溶液或者0.1%乙酸水溶液清洗。此外,還可以採用1%十二烷基硫酸鈉 (SDS),然後用5%~95%乙腈/水(含0.1%TFA)梯度沖洗,去除蛋白污染物效果也較好。
若採用上述的條件清洗後色譜柱仍不能達到理想的效果,有必要將固定相從色譜柱內取出,進行清洗再生後重新裝填。具體操作是:將色譜固定相從色譜柱內打出後,用甲醇浮選,去除其中細小的破碎顆粒;然後用二甲基甲醯胺、丙酮、甲醇超聲清洗;最後乾燥固定相,重新裝填色譜柱。經該方法處理的色譜柱,性能可得到顯著提高。
2、色譜柱的保存
色譜柱的保存應按照使用說明書中所指明的溶劑進行填充,盡可能的貯存於100%有機溶劑。色譜柱不能貯存在水或含水量高的溶劑中,會引起微生物的滋生,影響色譜柱壽命。如反相色譜柱長期不用,最好採用90%~95%的有機溶劑混合水溶液保存,防止色譜柱因密封不嚴造成色譜柱兩頭乾涸、斷層引起的壽命縮短。
此外,色譜柱還應當輕拿輕放,避免劇烈碰撞引起的色譜柱填料產生塌陷、斷層,縮短使用壽命。答案來自
G. 如何保護色譜柱延長使用壽命
一、流動相的PH應在使用的范圍內
Welch公司的色譜柱除反相氰基柱PH1.5-9.0外,其反相色譜柱的PH范圍均為1.5-10,由於填料中存在Si-C和Si-O鍵,流動相超過其PH范圍將會導致硅膠基質流失和鍵合相碳鏈斷裂,使柱效下降,使用壽命變短。由於流動相的PH 控制不當而對色譜柱造成的損害,通常很難是色譜柱恢復,因此必須認真對待,嚴格控制流動相的PH值。
二、去除樣品和流動相中的固體顆粒
樣品和流動相中含有的固體顆粒物質會堵塞色譜柱篩板,篩板被堵住不僅會引起柱壓的升高,而且也會引起柱效下降,因為篩板的堵塞會引起液流不均,導致色譜峰型拖尾、變寬,從而使柱效下降。因此,建議使用超純水和色譜純試劑,在分析樣品前對樣品進行針筒過濾,流動相過0.45μm濾膜。
三、使用保護柱或在線過濾器
樣品和流動相經過濾後並不能完全消除固體顆粒物質,因為泵的磨損、密封圈和管路的老化也會產生固體顆粒物質,這些固體顆粒被流動相帶入色譜柱,堵塞篩板,導致柱壓升高、柱效下降。保護柱和在線過濾器上都有篩板,其孔徑與色譜柱孔徑相同,因此可以阻止固體顆粒物質到達色譜柱,有效防止色譜柱篩板的堵塞。由於柱壓升高在分析故障中占很大 比例,因此,除對樣品和流動相進行過濾外,建議您在色譜柱進樣端加上保護柱或在線過濾器。
如果去人色譜柱柱壓升高是由於進樣端篩板被堵引起的,科選擇一下方式進行補救:
1、先在色譜柱前加上保護柱或在線過濾器,然後用甲醇、水=20/80ml/min反向沖色譜柱180min。
2、先在色譜柱進樣端加上保護柱或在線過濾器,然後反向使用。
四、正確使用緩沖鹽
緩沖鹽通常易溶於水,難溶於有機溶劑,因此緩沖鹽使用不當會使其析出,堵塞填料基質上的微孔和顆粒間的空隙,使填料板結,柱壓上升;同時阻礙了基質上鍵合的碳鏈自由舒展,使色譜柱的保留能力下降,柱效降低。緩沖鹽析出後,去除非常困難,因此,正確的使用緩沖鹽對延長色譜柱使用壽命非常重要。
正確使用緩沖鹽的目的是防止緩沖鹽析出,因此正確使用緩沖鹽的方法可歸結為一句話:使用前要過濾,使用後要沖洗。具體方法如下:
1、等度條件:使用緩沖鹽前和使用後需用過渡流動相以1.0ml/min流速沖洗60min;使用後去除緩沖鹽的另一個方法是用過渡流動相以0.2ml/min流速沖洗色譜柱過夜。
2、梯度條件:用含有緩沖鹽的流動相跑梯度之前,用與初始流動相組成相同的過渡流動相以1.0ml/min流速沖洗60min,再用該過渡流動相以1.0ml/min沖洗色譜柱120min。含緩沖鹽流動相的梯度設定應盡量平緩,以避免梯度過程中緩沖鹽析出。
注意:過渡流動相是指有機相和水相的組成與分析流動相相同,區別只是過渡流動相不含緩沖鹽。
3、緩沖鹽析出的補救方法:
1)方案1:用甲醇/20/80以1.0ml/min流速35攝氏度條件下反向沖洗色譜柱120min
2)方案2:用甲醇/水=20/80以0.2ml/min流速反向沖洗色譜柱過夜。
五、防止強保留物質在色譜柱上存留
強保留物質和大分子化合物在色譜柱中累積,對樣品中的化合物產生額外的保留行為,不僅引起峰型變寬、拖尾,使柱效下降,同時也會引起保留時間的變化,累積到一定程度時還會導致柱壓升高。由於強保留物質和大分子化合物對色譜分離的影響是一個累積效應,需要一定的時間才會體現出來,但對許多葯品特別是復雜樣品而言,很難判斷其是否是含有強保留物質,因此要防止強保留物質的累積,需要在每天的日常維護中用純甲醇或乙氰清洗色譜柱。
清洗方法:
1、未使用緩沖鹽:每天分析完成後,先用上述方法除去緩沖鹽,然後再用甲醇或乙氰反向沖洗色譜柱60min。
2、使用過緩沖鹽:分析完成後,先用上述方法除去緩沖鹽,然後在用純甲醇或乙氰反向沖洗色譜柱60min
3、補救方法:
水——乙氰——氯仿(或異丙醇)——乙氰——水
每一步以1.0ml/min流速反向沖洗色譜柱60min。