常用的數據分析方法有:聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析。
1、聚類分析(Cluster Analysis)
聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。
2、因子分析(Factor Analysis)
因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。
3、相關分析(Correlation Analysis)
相關分析(correlation analysis),相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。
4、對應分析(Correspondence Analysis)
對應分析(Correspondence analysis)也稱關聯分析、R-Q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
5、回歸分析
研究一個隨機變數Y對另一個(X)或一組(X1,X2,?,Xk)變數的相依關系的統計分析方法。回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。
6、方差分析(ANOVA/Analysis of Variance)
又稱「變異數分析」或「F檢驗」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。
想了解更多關於數據分析的信息,推薦到CDA數據認證中心看看,CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證, 旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。
❷ 最小二乘法、回歸分析法、灰色預測法、決策論、神經網路等5個演算法的使用范圍及優缺點是什麼
最小二乘法:通過最小化誤差的平方和尋找數據的最佳函數匹配。利用最小二乘法可以簡便地求得未知的數據,並使得這些求得的數據與實際數據之間誤差的平方和為最小。最小二乘法還可用於曲線擬合。其他一些優化問題也可通過最小化能量或最大化熵用最小二乘法來表達。優點:實現簡單,計算簡單。缺點:不能擬合非線性數據.
回歸分析法:指的是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。在大數據分析中,回歸分析是一種預測性的建模技術,它研究的是因變數(目標)和自變數(預測器)之間的關系。這種技術通常用於預測分析,時間序列模型以及發現變數之間的因果關系。優點:在分析多因素模型時,更加簡單和方便,不僅可以預測並求出函數,還可以自己對結果進行殘差的檢驗,檢驗模型的精度。缺點:回歸方程式只是一種推測,這影響了因子的多樣性和某些因子的不可測性,使得回歸分析在某些情況下受到限制。
灰色預測法:
色預測法是一種對含有不確定因素的系統進行預測的方法 。它通過鑒別系統因素之間發展趨勢的相異程度,即進行關聯分析,並對原始數據進行生成處理來尋找系統變動的規律,生成有較強規律性的數據序列,然後建立相應的微分方程模型,從而預測事物未來發展趨勢的狀況。它用等時間距離觀測到的反應預測對象特徵的一系列數量值構造灰色預測模型,預測未來某一時刻的特徵量,或者達到某一特徵量的時間。優點:對於不確定因素的復雜系統預測效果較好,且所需樣本數據較小。缺點:基於指數率的預測沒有考慮系統的隨機性,中長期預測精度較差。
決策樹:在已知各種情況發生概率的基礎上,通過構成決策樹來求取凈現值的期望值大於等於零的概率,評價項目風險,判斷其可行性的決策分析方法,是直觀運用概率分析的一種圖解法。由於這種決策分支畫成圖形很像一棵樹的枝幹,故稱決策樹。在機器學習中,決策樹是一個預測模型,他代表的是對象屬性與對象值之間的一種映射關系。優點:能夠處理不相關的特徵;在相對短的時間內能夠對大型數據源做出可行且效果良好的分析;計算簡單,易於理解,可解釋性強;比較適合處理有缺失屬性的樣本。缺點:忽略了數據之間的相關性;容易發生過擬合(隨機森林可以很大程度上減少過擬合);在決策樹當中,對於各類別樣本數量不一致的數據,信息增益的結果偏向於那些具有更多數值的特徵。
神經網路:優點:分類的准確度高;並行分布處理能力強,分布存儲及學習能力強,對雜訊神經有較強的魯棒性和容錯能力,能充分逼近復雜的非線性關系;具備聯想記憶的功能。缺點:神經網路需要大量的參數,如網路拓撲結構、權值和閾值的初始值;不能觀察之間的學習過程,輸出結果難以解釋,會影響到結果的可信度和可接受程度;學習時間過長,甚至可能達不到學習的目的。
❸ 什麼是演算法分析,演算法分析的目的
圖像分割基本原理:根據圖像的組成結構和應用需求將圖像劃分為若干個互不相交的子區域的過程。這些子區域四某種意義下具有共同屬性的像素的連通集合。常用方法有:1)以區域為對象進行分割,以相似性原則作為分割的依據,即可根據圖像的灰度、色彩、變換關系等方面的特徵相似來劃分圖像的子區域,並將各像素劃歸到相應物體或區域的像素聚類方法,即區域法;2)以物體邊界為對象進行分割,通過直接確定區域間的邊界來實現分割;3)先檢測邊緣像素,再將邊緣像素連接起來構成邊界形成分割。具體的閾值分割:閾值分割方法分為以下3類:1)全局閾值:T=T[p(x,y)〕,即僅根據f(x,y)來選取閾值,閾值僅與各個圖像像素的本身性質有關。2)局部閾值:T=T[f(x,y),p(x,y)],閾值與圖像像素的本身性質和局部區域性質相關。3)動態閾值:T=T[x,y,f(x,y),p(x,y)],閾值與像素坐標,圖像像素的本身性質和局部區域性質相關。全局閾值對整幅圖像僅設置一個分割閾值,通常在圖像不太復雜、灰度分布較集中的情況下採用;局部閾值則將圖像劃分為若干個子圖像,並對每個子圖像設定局部閾值;動態閾值是根據空間信息和灰度信息確定。局部閾值分割法雖然能改善分割效果,但存在幾個缺點:1)每幅子圖像的尺寸不能太小,否則統計出的結果無意義。2)每幅圖像的分割是任意的,如果有一幅子圖像正好落在目標區域或背景區域,而根據統計結果對其進行分割,也許會產生更差的結果。3)局部閾值法對每一幅子圖像都要進行統計,速度慢,難以適應實時性的要求。全局閾值分割方法在圖像處理中應用比較多,它在整幅圖像內採用固定的閾值分割圖像。考慮到全局閾值分割方法應用的廣泛性,本文所著重討論的就是全局閾值分割方法中的直方圖雙峰法和基於遺傳演算法的最大類間方差法。在本節中,將重點討論灰度直方圖雙峰法,最大類間方差法以及基於遺傳演算法的最大類間方差法留待下章做繼續深入地討論。參詳《數字圖像處理》工具:MATLAB或VC++
❹ 演算法分析的兩個主要方面是
空間復雜性和時間復雜性。
時間復雜度和空間復雜度是衡量演算法好差的重要指標,正確性和簡潔性、可讀性和可運行性是從軟體工程角度要求系統實現的目標。
一個演算法應包含有限的操作步驟,而不能是無限的,事實上有窮性往往是在合理的范圍之內,如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,不能將其視為有效演算法。
(4)演算法分析方法有哪些擴展閱讀:
演算法分析注意事項:
循環結構是演算法教學的重點和難點,要注意分散此難點,做到循序漸進,逐層深入,例如在教演算法含義時先滲透一點循環結構的知識,在教演算法3 種基本結構時可先給出循環結構的一些簡單的例子,到了教條件語句和循環語句時再逐步加深。
輸入數據的長度(通常考慮任意大的輸入,沒有上界),值域通常是執行步驟數量(時間復雜度)或者存儲器位置數量(空間復雜度)。演算法分析是計算復雜度理論的重要組成部分。