導航:首頁 > 研究方法 > 高中數學解題方法及技巧的相關研究周增欽

高中數學解題方法及技巧的相關研究周增欽

發布時間:2023-03-13 04:32:17

A. 高中數學解題技巧

導語:數學(mathematics或maths),是研究數量櫻攔、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬於形式科學的一種。而在人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

高中數學解題技巧

第一個技巧,看清審題與解題

有的考生對審題重視不夠,匆匆一看急於下筆,以致題目的條件與要求都沒有吃透,至於如何從題目中挖掘隱含條件、啟發解題思路就更無從談起,這樣解題出錯自然多。只有耐心仔細地審題,准確地把握題目中的關鍵詞與量?如「至少」,「a>0」,自變數的取值范圍等,從中獲取盡可能多的信息,才能迅速找准解題方向。

第二個技巧,利用好快與准

只有「准」才能得分,只有「准」你才可不必考慮再花時間檢查,而「快」是平時訓練的結果,不是考場上所能解決的問題,一味求快,只會落得錯誤百出。如去年第21題應用題,此題列出分段函數解析式並不難,但是相當多的考生在匆忙中把二次函數甚至一次函數都算錯,盡管後繼部分解題思路正確又花時間去算,也幾乎得不到分,這與考生的實際水平是不相符的,適當地慢一點、准一點,可得多一點分;相反,快一點,錯一片,花了時間還得不到分。

第三種解題技巧:「會做」與「得分」的關系

要將你的解題策略轉化為得分點,主要靠准確完整的數學語言表述,這一點銀頌祥往往被一些考生所忽視,因此卷面上大量出現「會而不對」「對而不全」的情況,考生自己的估分與實際得分差之甚遠。如去年理17題三角函數圖像變換,許多考生「心中有數」卻說不清楚,扣分者也不在少數。這樣的失分情況,的確很冤枉,所以高中學習網不希望我們的同學也犯這樣的錯誤!

第四種解題技巧:難題與容易題的關系

一般來說,當我們拿到試卷後,應將全卷通覽一遍,一般來說應按先易後難、先簡後繁的.順序作答。但是,近年來考題的順序並不完全是難易的順序,因此在答題時要合理安排時間!此外,高中學習方法指導名師建議我們的同學,在解答題時都應設置了層次分明的「台階」,因為看似容易的題也會有「咬手」的關卡,看似難做的題也有可得分之處。所以考試中看到「容易」題不可掉以輕心,看到難題不要膽怯,冷靜思考、仔細分析,定能得到應有的分數。

【相關內容】:

高考數學十二大臨場考試技巧

一、調理大腦思緒,提前進入數學情境

考前要摒棄雜念,排除干擾思緒,使大腦處於「空白」狀態,創設數學情境,進而醞釀數學思維,提前進入「角色」,通過清點用具、暗示重要知識和方法、提醒常見解題誤區和自己易出現的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩定情緒、增強信心,使思維單一化、數學化、以平穩自信、積極主動的心態准備應考。

二、「內緊外松」,集中注意,消除焦慮怯場

集中注意力是考試成功的保證,一定的神經亢奮和緊張,能加速神經聯系,有益於積極思維,要使注意力高度集中,思維異常積極,這叫內緊,但緊張程度過重,則會走向反面,形成怯場,產生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。

三、沉著應戰,確保旗開得勝,以利振奮精神

良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題後,不要急於求成、立即下手解題,而應通覽一遍整套試題,摸透題情,然後穩操一兩個易題熟題,讓自己產生「旗開得勝」的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態,即發揮心理學所謂的「門坎效應」,之後做一題得一題,不斷產生正激勵,穩拿中低,見機攀高。

四、「六先六後」,因人因卷制宜

在通覽全卷,將簡單題順手完成的情況下,情緒趨於穩定,情境趨於單一,大腦趨於亢奮,思維趨於積極,之後便是發揮臨場解鋒搏題能力的黃金季節了。這時,考生可依自己的解題習慣和基本功,結合整套試題結構,選擇執行「六先六後」的戰術原則。

1.先易後難。就是先做簡單題,再做綜合題。應根據自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

2.先熟後生。通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處。對後者,不要驚慌失措。應想到試題偏難對所有考生也難。通過這種暗示,確保情緒穩定。對全卷整體把握之後,就可實施先熟後生的策略,即先做那些內容掌握比較到家、題型結構比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發揮,達到拿下中高檔題目的目的。

3.先同後異,就是說,先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利於提高單位時間的效益。高考題一般要求較快地進行「興奮灶」的轉移,而「先同後異」,可以避免「興奮灶」過急、過頻的跳躍,從而減輕大腦負擔,保持有效精力。

4.先小後大。小題一般是信息量少、運算量小,易於把握,不要輕易放過,應爭取在大題之前盡快解決,從而為解決大題贏得時間,創造一個寬松的心理基礎。

5.先點後面,近年的高考數學解答題多呈現為多問漸難式的「梯度題」,解答時不必一氣審到底,應走一步解決一步,而前面問題的解決又為後面問題准備了思維基礎和解題條件,所以要步步為營,由點到面。

6.先高後低。即在考試的後半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施「分段得分」,以增加在時間不足前提下的得分。

五、一「慢」一「快」,相得益彰

有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的「基礎工程」,題目本身是「怎樣解題」的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。

六、確保運算準確,立足一次成功

數學高考題的容量在120分鍾時間內完成大小22個題,時間很緊張,不允許做大量細致的解後檢驗,所以要盡量准確運算(關鍵步驟,力求准確,寧慢勿快),立足一次成功。解題速度是建立在解題准確度基礎上,更何況數學題的中間數據常常不但從「數量」上,而且從「性質」上影響著後繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步准確,不能為追求速度而丟掉准確度,甚至丟掉重要的得分步驟。假如速度與准確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。

七、講求規范書寫,力爭既對又全

考試的又一個特點是以卷面為唯一依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、「感情分」也就相應低了,此所謂心理學上的「光環效應」。「書寫要工整,卷面能得分」講的也正是這個道理。

八、面對難題,講究策略,爭取得分

會做的題目當然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法

1.缺步解答。對一個疑難問題,確實啃不動時,一個明智的解題策略是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什麼程度就解決到什麼程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數。如從最初的把文字語言譯成符號語言,把條件和目標譯成數學表達式,設應用題的未知數,設軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。還有象完成數學歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產生頓悟,形成思路,獲得解題成功。

2.跳步解答。解題過程卡在一中間環節上時,可以承認中間結論,往下推,看能否得到正確結論,如得不出,說明此途徑不對,立即否得到正確結論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預期結論,就再回頭集中力量攻克這一過渡環節。若因時間限制,中間結論來不及得到證實,就只好跳過這一步,寫出後繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為「已知」,完成第二問,這都叫跳步解答。也許後來由於解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經努力而攻下了中間難點,可在相應題尾補上。

九、以退求進,立足特殊,發散一般

對於一個較一般的問題,若一時不能取得一般思路,可以採取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等。總之,退到一個你能夠解決的程度上,通過對「特殊」的思考與解決,啟發思維,達到對「一般」的解決。

十、執果索因,逆向思考,正難則反

對一個問題正面思考發生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展。順向推有困難就逆推,直接證有困難就反證。如用分析法,從肯定結論或中間步驟入手,找充分條件;用反證法,從否定結論入手找必要條件。

十一、迴避結論的肯定與否定,解決探索性問題

對探索性問題,不必追求結論的「是」與「否」、「有」與「無」,可以一開始,就綜合所有條件,進行嚴格的推理與討論,則步驟所至,結論自明。

十二、應用性問題思路:面—點—線

解決應用性問題,首先要全面調查題意,迅速接受概念,此為「面」;透過冗長敘述,抓住重點詞句,提出重點數據,此為「點」;綜合聯系,提煉關系,依靠數學方法,建立數學模型,此為「線」。如此將應用性問題轉化為純數學問題。當然,求解過程和結果都不能離開實際。

B. 高中數學專題題型及解題技巧

數學作為一門相對抽象化的學科,是很多學生提高成績的障礙,而習題則為學生提供了提高數學成績的有效途徑.高中數學習題是數學教學中的重要一環下面,下面是我為大家整理的關於高中數學專題題型及解題技巧,希望對您有所幫助。歡迎大家閱讀參考學習!

1高中數學專題題型及解題技巧

選擇題

選擇題是高中數學考試中的較基礎題型之一,分為多項選擇和單項選擇,一般是放在考查的第一部分,是考試重心,在習題練習中也佔有較大比例.目前的高中數學選擇題傾向於單項選擇,表面看來降低了不少難度,但是選項中的相近答案極易給學生以誤導.通常來說,選擇題的知識覆蓋面較廣,思維具有跳躍性,題目由淺到深,是檢測學生觀察、分析以及推理判斷能力的有效手段

.如何提高解答選擇題正確率,這就要求學生在練習中要充分利用題干中提供的各種信息,排除相似選項的干擾,一方面從題干出發,探求結果,另一方面結合選項,排除矛盾.我們可以採取排除法,概念分析法、圖形分析法和 逆向思維 法相結合,靈活運用各種定理概念,做到 發散思維 ,提高解題時效率.如題:設定義在R上的函數f(x)滿足f(x)?f(x+2)=13,若f(1)=2,則f(99)等於( ).該題共有四個答案,分別是13、2、 132、213.我們可以通過這樣的步驟計算:(1)(x+2)=13f(x),f(x+4)=13f(x+2)=1313f(x)=f(x).(2)函數f(x)為周期函數,且T=4,f(99)=f(4×24+3)=f(3)=13f(1)=132.在這里,我們利用題干中的相關條件,運用函數的周期性這一概念,得到f(x)是周期為4的函數.周期性是解答此題的關鍵,我們可以利用直接法算出.

填空題

選擇題在考試中放在選擇題後,題量不大,難度相對較低,但是分值也不高,主要是為了考查學生的基本技能和學生的基礎能力.學生能夠利用基礎知識解決和分析問題,在填空題中就不會失去太多分數.填空題與選擇題的差別在於:首先,填空題沒有選項,在解答問題時缺乏提示,但是同時也排除了相似項的干擾;其次,填空題是在題干中抽出一部分內容由學生填補,結構簡單、概念性強;

此外,填空題不要求寫出運算過程,是將結論直接填入空位中的求解題.一般來說,填空題的運算量都不算大,學生可以基本採用數形結合法、等價轉換法、構造法等,小題小做,提高正確率.如:在△ABC中,角A、B、C所對的邊分別為a、b、c,如果a、b、c成等差數列,則cosA+cosC1+cosAcosC=.解這道題有兩種 方法 ,首先:我們可以通過取特殊值來計算,例如a=3,b=4,c=5,則cosA=45,cosC=0,cosA+cosC;1+cosAcosC=45;其次:利用角的特殊性,取特殊角A=B=C=π3,cosA=cosC=12,cosA+cosC1+cosAcosC=45.這就要求我們要熟練掌握三角形的概念以及特殊三角形直接的關系,才能在習題練習中節省時間,順利解答.

2高中數學解題技巧

靈活數學解題技巧的運用目標

所謂靈活的數學解題技巧就是在有效的學習時間內讓學生的數學學習效果達到最大化.具體目標是形成與數學課本內容緊密鑲嵌的解題模式,改變學生慣有的學習方式,對待不同類型的題目要注意靈活運用.熟練地運用數學解題技巧不是一味地為了技巧而運用技巧,而是在熟練掌握基本的課本知識的同時,在逐漸的積累與實踐中掌握不同類型題目的學習規律,讓數學解題技巧成為學生的一種輔助工具

比如有的題目可以套用公式,但是同樣也可以按照規律進行簡便運算,數學解題技巧的運用旨在培養學生獨立思考的 邏輯思維 能力和分析能力.不單單要讓學生學會應對應試 教育 模式,還要更加註重技巧對學生解題的幫助以及運用數學思維去解決實際問題的能力.

審題技巧

審題是正確解題的關鍵,是對題目進行分析、綜合、尋求解題思路和方法的過程,審題過程包括明確條件與目標、分析條件與目標的聯系、確定解題思路與方法三部分。(1)條件的分析,一是找出題目中明確告訴的已知條件,二是發現題目的隱含條件並加以揭示。目標的分析,主要是明確要求什麼或要證明什麼;把復雜的目標轉化為簡單的目標;

把抽象目標轉化為具體的目標;把不易把握的目標轉化為可把握的目標。(2)分析條件與目標的聯系。每個數學問題都是由若干條件與目標組成的。解題者在閱讀題目的基礎上,需要找一找從條件到目標缺少些什麼?或從條件順推,或從目標分析,或畫出關聯的草圖並把條件與目標標在圖上,找出它們的內在聯系,以順利實現解題的目標。(3)確定解題思路。一個題目的條件與目標之間存在著一系列必然的聯系,這些聯系是由條件通向目標的橋梁。用哪些聯系解題,需要根據這些聯系所遵循的數學原理確定。解題的實質就是分析這些聯系與哪個數學原理相匹配。有些題目,這種聯系十分隱蔽,必須經過認真分析才能加以揭示;有些題目的匹配關系有多種,而這正是一個問題有多種解法的原因。

3數學的解題方法

一「慢」一「快」,相得益彰

有些考生只知道考場上一味地要快,結果題意未清,條件未全,便急於解答,豈不知欲速則不達,結果是思維受阻或進入死胡同,導致失敗。應該說,審題要慢,解答要快。審題是整個解題過程的「基礎工程」,題目本身是「怎樣解題」的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據。而思路一旦形成,則可盡量快速完成。

講求規范書寫,力爭既對又全

考試的又一個特點是以卷面為依據。這就要求不但會而且要對、對且全,全而規范。會而不對,令人惋惜;對而不全,得分不高;表述不規范、字跡不工整又是造成高考數學試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學習不認真、基本功不過硬、「感情分」 也就相應低了,此所謂心理學上的「光環效應」。「書寫要工整,卷面能得分」講的也正是這個道理。

確保運算準確,立足一次成功

數學高考題的容量在120分鍾時間內完成大小二十多個題,時間很緊張,不允許做大量細致的解後檢驗,所以要盡量准確運算(關鍵步驟,力求准確,寧慢勿快),立足一次成功。解題速度是建立在解題准確度基礎上,更何況數學題的中間數據常常不但從「數量」上,而且從「性質」上影響著後繼各步的解答。所以,在以快為上的前提下,要穩扎穩打,層層有據,步步准確,不能為追求速度而丟掉准確度,甚至丟掉重要的得分步驟,假如速度與准確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。

4高中數學具體解題技巧

數形結合法

數學是一門邏輯思維極強的學科,針對數學題目的復雜性、抽象性,繪制圖形進行參照是正確解題的重要一步.這種方法一般用於函數圖像、幾何圖形、立體幾何等題目的求解中,數形結合法不僅對於解決數學大題至關重要,在選擇題領域也有廣泛的應用.但要注意的是,在使用數形結合法時,切勿將圖形畫錯而影響題目的正確解答.

直接答題法

直接答題法要求我們直接從題目所給的條件出發,運用相關的概念、性質和公式等知識,在層層推理與運算的基礎上,得到題目的正確答案.直接答題法一般常用於涉及概念、性質的考查或者運算相對簡單選擇題與填空題.例如,在進行「三角函數」的計算時,我們習慣於使用數形結合法對其函數性質進行深入的研究,那麼在做題時就難免思維定式,無論多麼簡單的題目都進行畫圖求解,這無形中就浪費了很多的答題時間.當進行「三角函數」大小比較時,比如正弦函數與餘弦函數的比較過程中,我們往往可以採用直接法進行一次性求解.

特殊代入法

特殊代入法指能夠根據題目的具體要求,靈活代入數值,確定圖形的特殊關系和位置來取代題目的正規解法,通過得出的特殊答案,對題目的選項進行一一代入篩選,從而做出正確的判斷.這種方法常用於題目條件清晰的特殊函數、特殊圖形、特殊極值的解答中.例如,在進行含有未知數的等差數列求和時,除了按照等差數列的性質將帶有未知數的公式列出來,還可以賦予未知數一個特殊的值,這個值一般為「1」或者是「0」,通過特殊值求出特殊的結果,最後進行整個公式的代入求值.


高中數學專題題型及解題技巧相關 文章 :

1. 高中數學常考題型答題技巧與方法及順口溜

2. 高中數學題型特點以及答題技巧

3. 高中數學21種解題方法與技巧

4. 高考數學常考題型答題技巧與方法有哪些

5. 高中數學解答題8個答題模板與做大題的方法

6. 高考數學必考題型以及題型分析

7. 高考數學題型特點和答題技巧

8. 高中數學六種解題技巧與五種數學答題思路

9. 高中數學50個解題小技巧

10. 高中數學7大學習方法,高考數學命題點及答題技巧

C. 高中數學解題技巧與方法

2019學魁`榜邱崇數學解題技巧(含終極秒殺選填)(16.6G超清視頻)

鏈接:

提取碼: 12i6

若資源有問題歡迎追問~

D. 怎樣解題 高中數學解題方法與技巧

2019學魁`榜邱崇數學解題技巧(含終極秒殺選填)(16.6G超清視頻)

鏈接:

提取碼: 12i6

若資源有問題歡迎追問~

E. 高中解題方法 高中數學解題常用的幾種解題思路和技巧

1、方程解題法

很多數學題目中有著復雜的數量關系,而且涉及到許多知識點,當我們在解析題目中的數量關系時,如果直接對其數量關系進行分析,不僅增加我們解題過程,還會提高題目整體難度,這樣我們就難以理清題目中的各種關系,給我們有效解決題目帶來較大麻煩。

數學題目中的各種數量關系大都具有緊密聯系,所以我們可以利用方程解題法建立多種數量關系,簡化解題步驟,幫助我們更好解決數學問題。

2、排除解題法

排除解題法一般用於解決數學選擇題,當我們應用排除法解決問題時,需掌握各種數學概念及公式,對題目中的答案進行論證,對不符合論證關系的答案進行排除,從而有效解決數學問題。當我們在解決選擇題時,必須將題目及答案都認真看完,對其之間的聯系進行合理分析,並通過嚴謹的解題思路將不符合論證關系的條件進行排除,從而選擇正確的答案。

排除解題法主要用於縮小答案范圍,從而簡化我們的解題步驟,提高接替效率,這樣方法具有較高的准確率。

F. 高中數學解題套路和技巧有哪些

一.解題時需要注意的問題
1.精選題目,避免題海戰術 只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。
2. 認真分析題目 解答任何一個數學題目之前,都要先進行分析。相對於比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。
3. 做好題目總結 解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足,以便改進和提高。因此,解題後的總結至關重要,這正是我們學習的大好機會。對於一道完成的題目,有以下幾個方面需要總結:
1)在知識方面。題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。
2)在方法方面。如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。
3)能否歸納出題目的類型,進而掌握這類題目的解題方法。
二.數學解題的一些技巧
1.思路思想提煉法 催生解題靈感。「沒有解題思想,就沒有解題靈感」。但「解題思想」對很多學生來說是既熟悉又陌生的。熟悉是因為教師每天掛在嘴邊,陌生就是說不請它究竟是什麼。建議同學們在老師的指導下,多做典型的數學題目,則可以快速掌握。
2. 典型題型精熟法 抓准重點考點管理學的「二八法則」說:20%的重要工作產生80%的效果,而80%的瑣碎工作只產生20%的效果。數學學習上也有同樣現象:20%的題目(重點、考點集中的題目)對於考試成績起到了80%的貢獻。因此,提高數學成績,必須優先抓住那20%的題目。針對許多學生「題目解答多,研究得不透」的現象,應當通過科學用腦,達到每個章節的典型題型都胸有成竹時,解題時就會得心應手。
3. 逐步深入糾錯法 鞏固薄弱環節管理學上的「木桶理論」說:一隻水桶盛水多少由最短板決定,而不是由最長板決定。學數學也是這樣,數學考試成績往往會因為某些薄弱環節大受影響。因此,鞏固某個薄弱環節,比做對一百道題更重要。

G. 高中數學數列解題方法與技巧

高中數學數列方法和技巧:公式法、倒序相加法、錯位相減法。

1、公式法

假如一個數列是等差數列或等比數列,則求和時直接利用等差、等比數列的前n項和公式。留意等比數列公示q的取值要分q=1和q-1。

數列在數學中的作用:

數列是特殊的函數。它的定義域一般是指非負的正整數,有時也可以為自然數,或者自然數的無限子集。自然數是離散的,數列通常稱為離散函數,離散函數是相對定義域為實數或者實數的區間的函數而言的。數列作為離散函數,在數學中有著自己的重要地位。

在高中和大學,除了專門研究數學之外,我們所遇到的函數都是「好的函數」,「好函數」不僅是連續的,而且是可導的,像冪函數、指數函數、對數函數、三角函數等都是好函數,它們具有任意階導數。數列在研究這些函數中發揮著重要作用。

H. 高中數學的解題的方法和學好數學的技巧

數學是應用性很強的學科,想要學好數學就要知到一些解題的方法,下面是我給大家帶來的有關於高中數學的解題的方法介紹,希望能夠幫助到大家。

高中數學的解題的方法

1、首先是精選題目,做到少而精。

只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。

2、其次是分析題目。

解答任何一個數學題目之前,都要先進行分析。相對於比較難的題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。例如,許多三角方面的題目都是把角、函數名、結構形式統一後就可以解決問題了,而選擇怎樣的三角公式也是成敗的關鍵。

3、最後,題目總結。

解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足的,以便改進和提高。因此,解題後的總結至關重要,這正是我們學習的大好機會。對於一道完成的題目,有以下幾個方面需要總結:

①在知識方面,題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。

②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。

③能不能把解題過程概括、歸納成幾個步驟(比如用數學歸納法證明題目就有很明顯的三個步驟)。

④能不能歸納出題目的類型,進而掌握這類題目的解題通法(我們反對老師把現成的題目類型給學生,讓學生拿著題目套類型,但我們鼓勵學生自己總結、歸納題目類型)。

高中數學學好的技巧

學會聽課

數學的學習是需要老師的引導,在引導下,高一學生根據自己的情況做一些相應的練習來掌握知識,鞏固知識,要想提高數學學習效率,就需要高一學生做到以下一些:

1、做好預習,提出問題,進行多次閱讀數學課本,查閱相關資料,回答自己提出的問題,力爭在老師講新課前盡可能的掌握更多的數學知識,如果不能回答的問題可以在老師講課中去解決。

2、學會聽課,在高一的教學中老師經常會把一個知識點進行多次的講解和通過大量的練習讓高一學生去掌握,可是到高中以後,老師對於一個數學知識點就不會再通過大量的練習來讓高一學生去掌握,而是通過一些相關知識的講解去引導高一學生明白這個知識是怎麼來的,又如何用這個知識解答一些相關的疑惑,如果高一學生能明白的話就能在自己的數學知識下通過課後的練習去鞏固這些知識,同時高一學生也可以根據老師的引導去擴展數學知識。

當然,對於自己在聽課過程中一下子不能明白的數學知識,可以通過舉手讓老師再進行一次分析講解,也同時做好相關的記錄,以備在課後去進一步弄明白;對於自己在預習中提出的問題,如果老師沒有解決的話,可以利用課余時間請教老師解答,這樣學習數學就可能學習到更多的知識。

3、敢於發表自己的想法,在高一數學學習中,高一學生會遇到很多解題技巧,可能這種方法你知道,另外的人不是很熟悉。那麼就需要高一學生敢於發表自己的想法,這樣就能讓大家掌握更多的技巧。也同樣能激發同學學習的興趣,如果一節課都是老師講的話,課堂氣氛也是很悶的,高一學生學習數學的效率也是很低的。

4、聽好每一分鍾,尤其是老師講課的開頭和結束

老師講課開頭,一般是概括前節課的要點指出本節數學課要講的內容,是把舊知識和新知識聯系起來的環節,結尾常常是對一節課所講數學知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節知識方法的綱要。

課後鞏固

很多高一學生在學習過程中沒有重視課後的鞏固,只是覺得在課堂上掌握一些數學知識就夠了,其實這是錯誤的。高中數學的知識很多,並且不像初中數學那麼淺顯,而是有很多的內涵,如果不能進一步挖掘其數學內涵,那麼只是掌握這個知識的表面,於是在自己做練習時就不知道如何去解了,也不能運用這個數學知識的。

做練習是需要的,可是有些高一學生只是為了練習去做練習,而不是為了鞏固這個知識,擴展這個知識去做練習,經常是做完這個練習後算做完了,這樣跟初中的做題是沒有區別的。其實,我們還應該把這個練習中使用到的數學知識串起來,這樣我們就能明白那些知識在運用,也能掌握更多的知識。也同樣能發現那個知識點是重點,也能發現難題是如何把相關數學知識串起來的。

高中數學學習的策略

聽好課

在課堂上集中注意力是想要學好一門科目的關鍵,高中數學課也不例外。數學也是一門極難學懂的課程,所以學生在課上課下都要花費大量的時間,數學也不是一門只要掌握好方法就能學懂的學科,所以在高中數學的學習上,一定要好好聽課,汲取老師的經驗,轉化為自己知識,才能把握住一些技巧性的東西,從而提高自己數學的分數。

勤做題

相信很多學生在高三的時候都經歷了瘋狂做題的階段,每天幾套幾套的卷子,做的學生心理疲憊。但是題海戰術面對我國現在高中生的普遍水平還是很管用的。如果你不像其他學霸那樣有著過人的天分,那麼在高中數學的學習上,就一定要多做題、勤做題。把每個你不會的題型都多做幾遍,做的多了,數學的水平自然也就上去了。

會歸納

閱讀全文

與高中數學解題方法及技巧的相關研究周增欽相關的資料

熱點內容
趙州橋哪裡用了什麼說明方法 瀏覽:631
冷水魚的正確使用方法 瀏覽:967
滅火原理及方法是什麼 瀏覽:134
提拉三角肌鍛煉方法 瀏覽:118
女士保暖褲的測量方法 瀏覽:287
迅達5200報警解決方法 瀏覽:481
男人不理你用什麼方法 瀏覽:428
實證研究策略和方法 瀏覽:8
砷實驗室檢測方法 瀏覽:971
如何認識科學的方法 瀏覽:929
測量控制線路的電壓的方法 瀏覽:254
分析小說人物形象的方法 瀏覽:35
蘋果手機主板故障解決方法 瀏覽:315
有沒有什麼方法可以拒絕借錢 瀏覽:315
除了里程錶還有什麼方法查里程 瀏覽:990
預算有哪些方法適用什麼情況 瀏覽:472
分析與綜合方法研究與應用實例 瀏覽:236
套褥子快速方法 瀏覽:926
如何突破思維障礙的方法的理解 瀏覽:674
抬頭紋太深了用什麼方法能去掉 瀏覽:773