導航:首頁 > 研究方法 > 回歸分析在數據處理方法上的應用

回歸分析在數據處理方法上的應用

發布時間:2023-03-12 14:32:53

⑴ 數據分析師必須掌握的7種回歸分析方法

1、線性回歸


線性回歸是數據分析法中最為人熟知的建模技術之一。它一般是人們在學習預測模型時首選的技術之一。在這種數據分析法中,由於變數是連續的,因此自變數可以是連續的也可以是離散的,回歸線的性質是線性的。


線性回歸使用最佳的擬合直線(也就是回歸線)在因變數(Y)和一個或多個自變數(X)之間建立一種關系。


2、邏輯回歸


邏輯回歸是用來計算“事件=Success”和“事件=Failure”的概率。當因變數的類型屬於二元(1 /0,真/假,是/否)變數時,我們就應該使用邏輯回歸.


邏輯回歸不要求自變數和因變數是線性關系。它可以處理各種類型的關系,因為它對預測的相對風險指數OR使用了一個非線性的log轉換。


為了避免過擬合和欠擬合,我們應該包括所有重要的變數。有一個很好的方法來確保這種情況,就是使用逐步篩選方法來估計邏輯回歸。它需要大的樣本量,因為在樣本數量較少的情況下,極大似然估計的效果比普通的最小二乘法差。


3、多項式回歸


對於一個回歸方程,如果自變數的指數大於1,那麼它就是多項式回歸方程。雖然會有一個誘導可以擬合一個高次多項式並得到較低的錯誤,但這可能會導致過擬合。你需要經常畫出關系圖來查看擬合情況,並且專注於保證擬合合理,既沒有過擬合又沒有欠擬合。下面是一個圖例,可以幫助理解:


明顯地向兩端尋找曲線點,看看這些形狀和趨勢是否有意義。更高次的多項式最後可能產生怪異的推斷結果。


4、逐步回歸


在處理多個自變數時,我們可以使用這種形式的回歸。在這種技術中,自變數的選擇是在一個自動的過程中完成的,其中包括非人為操作。


這一壯舉是通過觀察統計的值,如R-square,t-stats和AIC指標,來識別重要的變數。逐步回歸通過同時添加/刪除基於指定標準的協變數來擬合模型。


5、嶺回歸


嶺回歸分析是一種用於存在多重共線性(自變數高度相關)數據的技術。在多重共線性情況下,盡管最小二乘法(OLS)對每個變數很公平,但它們的差異很大,使得觀測值偏移並遠離真實值。嶺回歸通過給回歸估計上增加一個偏差度,來降低標准誤差。


除常數項以外,這種回歸的假設與最小二乘回歸類似;它收縮了相關系數的值,但沒有達到零,這表明它沒有特徵選擇功能,這是一個正則化方法,並且使用的是L2正則化。


6、套索回歸


它類似於嶺回歸。除常數項以外,這種回歸的假設與最小二乘回歸類似;它收縮系數接近零(等於零),確實有助於特徵選擇;這是一個正則化方法,使用的是L1正則化;如果預測的一組變數是高度相關的,Lasso 會選出其中一個變數並且將其它的收縮為零。


7、回歸


ElasticNet是Lasso和Ridge回歸技術的混合體。它使用L1來訓練並且L2優先作為正則化矩陣。當有多個相關的特徵時,ElasticNet是很有用的。Lasso會隨機挑選他們其中的一個,而ElasticNet則會選擇兩個。Lasso和Ridge之間的實際的優點是,它允許ElasticNet繼承循環狀態下Ridge的一些穩定性。


通常在高度相關變數的情況下,它會產生群體效應;選擇變數的數目沒有限制;並且可以承受雙重收縮。


關於數據分析師必須掌握的7種回歸分析方法,青藤小編就和您分享到這里了,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的職業前景及就業內容,可以點擊本站的其他文章進行學習。

什麼是回歸分析,運用回歸分析有什麼作用

回歸分析,也有稱曲線擬合.當在實驗中獲得自變數與因變數的一系列對應數據,(x1,y1),(x2,y2),(x3,y3),(xn,yn)時,要找出一個已知類型的函數,y=f(x) ,與之擬合,使得實際數據和理論曲線的離差平方和:∑[yi-f(xi)]^2(從i=1到i=n相加)為最小.這種求f(x)的方法,叫做最小二乘法。求得的函數y=f(x)常稱為經驗公式,在工程技術和科學研究的數據處理中廣泛使用.最普遍的是直線(一次曲線)擬合,在現代質量管理上,對散布圖的相關分析上也用此法.當然,以上僅介紹了回歸分析的一部分簡要內容,要詳細了解,應讀大學,或自學到這個程度.我是自學的,我想你只要堅持不懈的努力,也是會成功的.

⑶ 多元回歸分析的應用

回歸分析有很廣泛的應用,例如實驗數據的一般處理,經驗公式的求得,因素分析,產品質量的控制,氣象及地震預報,自動控制中數學模型的制定等等。
多元回歸分析是研究多個變數之間關系的回歸分析方法,按因變數和自變數的數量對應關系可劃分為一個因變數對多個自變數的回歸分析(簡稱為「一對多」回歸分析)及多個因變數對多個自變數的回歸分析(簡稱為「多對多」回歸分析),按回歸模型類型可劃分為線性回歸分析和非線性回歸分析。
本「多元回歸分析原理」是針對均勻設計3.00軟體的使用而編制的,它不是多元回歸分析的全面內容,欲了解多元回歸分析的其他內容請參閱回歸分析方面的書籍。
本部分內容分七個部分,§1~§4介紹「一對多」線性回歸分析,包括數學模型、回歸系數估計、回歸方程及回歸系數的顯著性檢驗、逐步回歸分析方法。「一對多」線性回歸分析是多元回歸分析的基礎,「多對多」回歸分析的內容與「一對多」的相應內容類似,§5介紹「多對多」線性回歸的數學模型,§6介紹「多對多」回歸的雙重篩選逐步回歸法。§7簡要介紹非線性回歸分析。
§1 一對多線性回歸分析的數學模型
設隨機變數與個自變數存在線性關系:
,(1.1)
(1.1)式稱為回歸方程,式中為回歸系數,為隨機誤差。
現在解決用估計的均值的問題,即

且假定,,是與無關的待定常數。
設有組樣本觀測數據:
其中表示在第次的觀測值,於是有: 重難點:了解聚類分析的基本思想、方法及其簡單應用;了解回歸的基本思想、方法及其簡單應用.
考綱要求:①了解聚類分析的基本思想、方法及其簡單應用.
②了解回歸的基本思想、方法及其簡單應用.

⑷ 多元線性回歸分析可以應用在哪些方面

(1)確定幾個特定的變數之間是否存在相關關系,如果存在的話,找出它們之間合適的數學表達式;

(2)根據一個或幾個變數的值,預測或控制另一個變數的取值,並且可以知道這種預測或控制能達到什麼樣的精確度;

(3)進行因素分析。

例如在對於共同影響一個變數的許多變數(因素)之間,找出哪些是重要因素,哪些是次要因素,這些因素之間又有什麼關系等等

多元線性回歸簡介

在回歸分析中,如果有兩個或兩個以上的自變數,就稱為多元回歸。事實上,一種現象常常是與多個因素相聯系的,由多個自變數的最優組合共同來預測或估計因變數,比只用一個自變數進行預測或估計更有效,更符合實際。因此多元線性回歸比一元線性回歸的實用意義更大。

以上內容參考網路-多元線性回歸

⑸ 回歸分析的基本過程及其應用意義

回歸分析(英語:Regression Analysis)是一種統計學上分析數據的方法,目的在於了解兩個或多個變數間是否相關、相關方向與強度,並建立數學模型以便觀察特定變數來預測研究者感興趣的變數。回歸分析是建立因變數Y(或稱依變數,反應變數)與自變數X(或稱獨變數,解釋變數)之間關系的模型。如果在回歸分析中,只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變數,且因變數和自變數之間是線性關系,則稱為多元線性回歸分析。對具有相關關系的現象,擇一適當的數學關系式,用以說明一個或一組變數變動時,另一變數或一組變數平均變動的情況,這種關系式稱為回歸方程。

⑹ 什麼是回歸分析,運用回歸分析有什麼作用

回歸分析(regressionanalysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。

運用十分廣泛,回歸分析按照涉及的變數的多少,分為一元回歸和多元回歸分析;按照因變數的多少,可分為簡單回歸分析和多重回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。如果在回歸分析中,只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變數,且自變數之間存在線性相關,則稱為多重線性回歸分析。

(6)回歸分析在數據處理方法上的應用擴展閱讀:

回歸分析步驟

1、確定變數

明確預測的具體目標,也就確定了因變數。如預測具體目標是下一年度的銷售量,那麼銷售量Y就是因變數。通過市場調查和查閱資料,尋找與預測目標的相關影響因素,即自變數,並從中選出主要的影響因素。

2、建立預測模型

依據自變數和因變數的歷史統計資料進行計算,在此基礎上建立回歸分析方程,即回歸分析預測模型。

3、進行相關分析

回歸分析是對具有因果關系的影響因素(自變數)和預測對象(因變數)所進行的數理統計分析處理。只有當自變數與因變數確實存在某種關系時,建立的回歸方程才有意義。因此,作為自變數的因素與作為因變數的預測對象是否有關,相關程度如何,以及判斷這種相關程度的把握性多大,就成為進行回歸分析必須要解決的問題。進行相關分析,一般要求出相關關系,以相關系數的大小來判斷自變數和因變數的相關的程度。

4、計算預測誤差

回歸預測模型是否可用於實際預測,取決於對回歸預測模型的檢驗和對預測誤差的計算。回歸方程只有通過各種檢驗,且預測誤差較小,才能將回歸方程作為預測模型進行預測。

5、確定預測值

利用回歸預測模型計算預測值,並對預測值進行綜合分析,確定最後的預測值。

⑺ 回歸分析法的應用

趨勢分析法總體上分四大類:(一)縱向分析法;(二)橫向分析法;(三)標准分析法;(四)綜合分析法。此外,趨勢分析法還有一種趨勢預測分析。趨勢預測分析運用回歸分析法、指數平滑法等方法來對財務報表的數據進行分析預測,分析其發展趨勢,並預測出可能的發展結果。以下先簡要介紹如何運用趨勢線性方程來作趨勢預測分析,其它四類方法後面分別介紹。趨勢線性方程是作趨勢分析時,預測銷售和收益所普遍採用的一種方法。公式表示為:y=a+bx.其中:a和b為常數,x表示時期系數的值,x是由分配確定,並要使∑x=0。為了使∑x=0。當時期數為偶數或奇數時,值的分配稍有不同

閱讀全文

與回歸分析在數據處理方法上的應用相關的資料

熱點內容
趙州橋哪裡用了什麼說明方法 瀏覽:631
冷水魚的正確使用方法 瀏覽:967
滅火原理及方法是什麼 瀏覽:134
提拉三角肌鍛煉方法 瀏覽:118
女士保暖褲的測量方法 瀏覽:287
迅達5200報警解決方法 瀏覽:481
男人不理你用什麼方法 瀏覽:428
實證研究策略和方法 瀏覽:8
砷實驗室檢測方法 瀏覽:971
如何認識科學的方法 瀏覽:929
測量控制線路的電壓的方法 瀏覽:254
分析小說人物形象的方法 瀏覽:35
蘋果手機主板故障解決方法 瀏覽:315
有沒有什麼方法可以拒絕借錢 瀏覽:315
除了里程錶還有什麼方法查里程 瀏覽:990
預算有哪些方法適用什麼情況 瀏覽:472
分析與綜合方法研究與應用實例 瀏覽:235
套褥子快速方法 瀏覽:925
如何突破思維障礙的方法的理解 瀏覽:674
抬頭紋太深了用什麼方法能去掉 瀏覽:773