『壹』 關於數學分析的學習方法
這樣沒有問題,一開始覺得可能比較慢,但基礎扎實。還有,要注意學習的節奏,不能在某些問題上乾耗。實在搞不明白,可以放著,以後學習深了,再來研究,說不定就會有意外收獲。有問題時可以找志同道合的一起研究,也是一大樂事。
『貳』 數學分析學習方法
數學分析課程有一個特點是重要、枯燥。重要是顯而易見的,數學分析作為專業基礎課程,對其它後繼課程的學習至關重要;同時它又是枯燥乏味的,這似乎是一對矛盾,要處理這對矛盾,就要解決一個數學分析學習當中的技巧性問題和心理問題。當然不可能人人都能把數學分析學好,由於各人的性向不同,有的人傾向於人文學科,有的人傾向於邏輯思維,有的人傾向於空間思維,有的人則傾向於動手能力….各人的傾向性不一樣,擅長的方 面也各不相同,對數學分析能達到的程度也不一樣。一. 數學分析中關於概念的問題�6�1 概念的形成需要一個過程。與人生哲理等概念不同,數學分析概念具有疊加性,也就是說新概念是在舊概念疊加的基礎上來認識的。概念是數學分析中的一個根本問 題,不是靠背,而是在不斷地運用中逐漸形成的,須經過比較、實踐、摸索、總結、歸納等過程,最後建立一個完整的概念。這個過程甚至可以說是痛苦的,漫長的 一個階 段。�6�1 概念具有長期性。每個概念都有一個失敗— 認識 —再失敗的過程,伴隨著你對這個概念的錯誤理解,在挫折中不斷加深的。�6�1 概念是隨著一個人知識的增加而不斷深入的。學數學分析對一個人建立完整的思維方式很重要,隨著對不同數學分析概念的深入理解,人們處理問題的方式可以越來越趨於嚴謹。�6�1 要建立一個數學分析的概念網。數學分析是一個個概念的點陣,所有的相關的、從屬的概念要在頭腦中形成一個網路。學概念要把不能納入其中的或相關概念認識清楚。總概念中各相關概念是怎樣發展的要有一個清晰的脈絡。�6�1 從不同的層面上來理解一個數學概念。有比較才有認識,對於一個數學分析概念要擅於從正面、側面、上面、下面等各個層面上來認識它。對於相似的、類似的概念或概念的內部關系認識不清,不利於理解概念,這說明數學分析末學深入。二. 運算能力 符號化、模式化是數學分析的一大特點,對這點我們應該有深刻的認識。1. 模式化。數學分析的一些定理、原理、公理都有一定的模式,「因為……所以…」即最簡單的一種模式,對各種數學模式的理解認識也是對人的邏輯思維能力的訓練。符號化。數學分析的符號與表達性符號不同,文學藝術中的表達性符號是需要我們仔細體會其中的含義的;而數學分析 中的符號是一種替代性符號,它無需我們想其含義,作用就在於推導,它只是一個替身,幫助我們進行數學思維,所以我們不可以在它的含義上耗費太多的精力。數 學就是符號游戲,我們對符號必須精通,才能進行迅速變形。三. 做題技巧�6�1 從做題方式來分,平時作業可分為硬作業和軟作業兩種:硬作業是指每天需要認認真真做的作業,這類作業要按正規的步驟一絲不苟地做,旨在訓練自己的筆頭功夫 和書寫能力;軟作業是指每日需抽出一定的時間來瀏覽若干習題,這類題主要是用來鍛煉自己的思維能力的,具體做法是無需動筆,眼睛看著習題,大腦中迅速掠過 這道題的思路、做法,整個過程有點類似空對空。所以在平日做題中兩種方式要搭配使用,認真做的題和瀏覽的題要相濟並用。�6�1 做題要有節奏,難易結合。做題要講質量,不能把精力都放在做偏、難、怪的題型上,若平時將重心放在難題上,基礎知識難免會偏失,所以平時適度地做一些中等難度的題即可,關鍵是要學好基礎知識,循序漸進。�6�1 做題要留下體會,留下痕跡,學習分為三個過程:模仿、品味、遷移。模仿是初始階段經常作用的一種方式,以老師或教科書為參照,按部就班地做。經過一次次地 模仿,我們自己對這些記憶中的題型在大腦中進一步地加工、體會,形成自己對這類題的成型的理解。經過前兩個階段的積累,最後達到將原知識體系與現有知識的 相互融合,就實現了對新、舊知識的最新體會。四. 數學分析學習方法 常見的數學方法有如下幾種:�6�1 化歸法。將復雜化問題化為若干個簡單的問題的一種思想。�6�1 注意經常對知識進行歸納、整理、總結,促進學過的知識更加系統化、條理化,解題時就能比較順利地將內在關系理順。�6�1 做題時應樹立一種次序和關聯的思想。數學的題干中各要素一般都是按一定的次序和關系排放的,做題前要審清題意,分先後,分主次,各個擊破。
『叄』 數學分析應該怎樣學習
一、課內重視聽講,課後及時復習。 新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課後要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不採用不清楚立即翻書之舉。認真獨立完成作業,勤於思考,從某種意義上講,應不造成不懂即問的學習作風,對於有些題目由於自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網路,納入自己的知識體系 二、適當多做題,養成良好的解題習慣。 要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為准,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對於一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。 三、調整心態,正確對待考試。 首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對於那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題後要總結歸納。調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。 在考試前要做好准備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對於一些容易的基礎題要有十二分把握拿全分;對於一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。