導航:首頁 > 研究方法 > 習慣用數據分析方法

習慣用數據分析方法

發布時間:2023-03-10 04:09:42

『壹』 【數據分析師必備】九大常用數據分析方法匯總(上)

定義: 描述性統計是一類統計方法的匯總,揭示了調查總體的數據分布特性。描述性統計分析要對調查總體所有變數的有關數據進行統計性描述,主要包括數據的頻數分析、集中趨勢分析、離散程度分析、分布以及一些基本的統計圖形。

應用:

①數據的頻數分析。在數據的預處理部分,利用頻數分析和交叉頻數分析可以檢驗異常值和缺失值。

②數據的集中趨勢分析。用來反映數據的一般水平,常用的指標有平均值、中位數和眾數等。

③數據的離散程度分析。主要是用來反映數據之間的差異程度,常用的指標有方差和標准差。

④數據的分布。在統計分析中,通常要假設樣本所屬總體的分布屬於正態分布,因此需要用偏度和峰度兩個指標來檢查樣本數據是否符合正態分布。

⑤繪制統計圖。用圖形的形式來表達數據,比用文字表達更清晰、更簡明。在SPSS軟體里,可以很容易地繪制各個變數的統計圖形,包括條形圖、餅圖和折線圖等。

定義: 回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析按照涉及的自變數的多少,分為回歸和多重回歸分析;按照自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。

應用:

如果在回歸分析中,只包括一個自變數X和一個因變數Y,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。一個經濟指標的數值往往受許多因素影響,若其中只有一個因素是主要的,起決定性作用,則可用一元線性回歸進行預測分析。一元線性回歸用途廣泛,可處理科學技術的實驗數據,也能用於經濟現象:統計數據的分析預測。

如果回歸分析中包括兩個或兩個以上的自變數,且因變數和自變數之間是線性關系,則稱為多元線性回歸分析。事實上,一種現象常常是與多個因素相聯系的,由多個自變數的最優組合共同來預測或估計因變數,比只用一個自變數進行預測或估計更有效,更符合實際。因此多元線性回歸比一元線性回歸的實用意義更大。

使用條件:分析多個自變數X與因變數Y的關系,X與Y都必須是連續型變數,因變數Y或其殘差必須服從正態分布。

線性回歸模型要求因變數是連續的正態分布變數,且自變數和因變數呈線性關系,而Logistic回歸模型對因變數的分布沒有要求,一般用於因變數是離散時的情況。常用於預測分類變數,其中主要是二分類變數。

例如,探討影響用戶復購的關鍵因素,並根據關鍵因素預測用戶復購行為發生的概率等。選擇兩組人群,一組是復購組,一組是非復購組,兩組人群必定具有不同的特徵與購買行為等。因此因變數就為是否復購,值為「是」或「否」,自變數就可以包括很多了,如年齡、性別、購買頻率、客單價、平均下單周期、購買品類佔比情況等。自變數既可以是連續的,也可以是分類的。然後通過logistic回歸分析,可以得到自變數的權重,從而可以大致了解到底哪些因素是產生復購行為的關鍵因素。同時可以根據關鍵因素預測用戶復購的的可能性。從而可以通過運營策略去加大復購的可能性,提升店鋪銷量。

④其他回歸方法:非線性回歸、有序回歸、Probit回歸、加權回歸等。

定義 :方差分析用於兩個及兩個以上樣本均數差別的顯著性檢驗。 由於各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。

使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態分布總體;各總體方差相等。

例如,在飼料養雞增肥的研究中,某研究所提出的三種飼料配方A、B、C。應該選擇哪種飼料,對雞增肥效果好且便宜?目的是為了比較三種飼料配方下雞的平均重量是否相等。特選24隻相似的雛雞隨機均分為三組,每組各喂一種飼料,60天定期觀測它們的重量並記錄。得到三組雛雞重量數據,比較這三組數據之間是否存在顯著性差異。若相等,可任選一種飼料,特別是可以選廉價飼料;若不等,應選增肥效果好的飼料。同理,可運用到相似場景中。

應用 :

單因素方差分析是用來研究一個控制變數的不同水平是否對觀測變數產生了顯著影響。這里,由於僅研究單個因素對觀測變數的影響,因此稱為單因素方差分析。

例如,分析不同施肥量是否給農作物產量帶來顯著影響,考察地區差異是否影響婦女的生育率,研究學歷對工資收入的影響等。這些問題都可以通過單因素方差分析得到答案。

多因素方差分析用來研究兩個及兩個以上控制變數是否對觀測變數產生顯著影響。這里,由於研究多個因素對觀測變數的影響,因此稱為多因素方差分析。多因素方差分析不僅能夠分析多個因素對觀測變數的獨立影響,更能夠分析多個控制因素的交互作用能否對觀測變數的分布產生顯著影響,進而最終找到利於觀測變數的最優組合。

例如,分析不同品種、不同施肥量對農作物產量的影響時,可將農作物產量作為觀測變數,品種和施肥量作為控制變數。利用多因素方差分析方法,研究不同品種、不同施肥量是如何影響農作物產量的,並進一步研究哪種品種與哪種水平的施肥量是提高農作物產量的最優組合。

通過上述的分析可以看到,不論是單因素方差分析還是多因素方差分析,控制因素都是可控的,其各個水平可以通過人為的努力得到控制和確定。但在許多實際問題中,有些控制因素很難人為控制,但它們的不同水平確實對觀測變數產生了較為顯著的影響。

例如,在研究農作物產量問題時,如果僅考察不同施肥量、品種對農作物產量的影響,不考慮不同地塊等因素而進行方差分析,顯然是不全面的。因為事實上有些地塊可能有利於農作物的生長,而另一些卻不利於農作物的生長。不考慮這些因素進行分析可能會導致:即使不同的施肥量、不同品種農作物產量沒有產生顯著影響,但分析的結論卻可能相反。這個時候就用到協方差分析。

定義: 假設檢驗(Hypothesis Testing)是數理統計學中根據一定假設條件由樣本推斷總體的一種方法。具體作法是:根據問題的需要對所研究的總體作某種假設,記作H0;選取合適的統計量,這個統計量的選取要使得在假設H0成立時,其分布為已知;由實測的樣本,計算出統計量的值,並根據預先給定的 顯著性水平進行檢驗 ,作出拒絕或接受假設H0的判斷。常用的假設檢驗方法有u-檢驗法、t檢驗法、χ2檢驗法(卡方檢驗)、F-檢驗法,秩和檢驗等。

應用:

參數檢驗對參數平均值、方差進行的統計檢驗,參數檢驗是推斷統計的重要組成部分。

非參數檢驗是統計分析方法的重要組成部分,它與參數檢驗共同構成統計推斷的基本內容。參數檢驗是在總體分布形式已知的情況下,對總體分布的參數如均值、方差等進行推斷的方法。但是,在數據分析過程中,由於種種原因,人們往往無法對總體分布形態作簡單假定,此時參數檢驗的方法就不再適用了。非參數檢驗正是一類基於這種考慮,在總體方差未知或知道甚少的情況下,利用樣本數據對總體分布形態等進行推斷的方法。由於非參數檢驗方法在推斷過程中不涉及有關總體分布的參數,因而得名為"非參數"檢驗。

非參數檢驗不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一般性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。

主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。

歡迎前往關注數據寶典公眾號,更多數據分析知識分享,以及案例總結分享~~

在數據分析道路上,學無止境,終身成長。

『貳』 常用的數據分析方法有哪些

①對比分析法

通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。常見的對比有橫向對比和縱向對比。


②分組分析法


分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。


③預測分析法


預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。


④漏斗分析法


漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡,最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。


⑤AB測試分析法


AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。

『叄』 常用的數據分析方法有哪些


常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。

『肆』 常見的5種數據分析方法

所謂公式法就是針對某個指標,用公式層層分解該指標的影響因素。

舉例:分析某產品的銷售額較低的原因,用公式法分解:

對比法就是用兩組或兩組以上的數據進行比較,是最通用的方法。

我們知道孤立的數據沒有意義,有對比才有差異。

一些直接描述事物的變數,如長度、數量、高度、寬度等,通過對比得到比率數據,增速、效率、效益等指標,這才是數據分析時常用的。

比如:用於在時間維度上的同比和環比、增長率、定基比、與競爭對手的對比、類別之間的對比、特徵和屬性對比等。

對比法可以發現數據變化規律,使用頻繁,經常和其他方法搭配使用。

通過對2種及以上緯度的劃分,運用坐標的方式表達出想要的價值。由價值直接轉變為策略,從而進行一些落地的推動。象限法是一種策略驅動的思維,常於產品分析、市場分析、客戶管理、商品管理等。

28法也可以叫帕累托法則,源於經典的二八法則。比如在個人財富上可以說世界上20%的人掌握著80%的財富。而在數據分析上,則可以理解為20%的數據產生了80%的效果,需要圍繞這20%的數據進行挖掘。

漏鬥法即是漏斗圖,有點像倒金字塔,是一個流程化的思考方式,常用於像新用戶的開發、購物轉化率這些有變化和一定流程的分析中。

『伍』 數據分析的方法有哪些

數據分析是指通過統計分析方法對收集到的數據進行分析,將數據加以匯總、理解並消化,通過數據分析可以幫助人們作出判斷,根據分析結果採取恰當的對策,常用的數據分析方法如下:

將收集到的數據通過加工、整理和分析的過程,使其轉化為信息,通常來說,數據分析常用的方法有列表法和作圖法,所謂列表法,就是將數據按一定規律用列表方式表達出來,是記錄和處理數據最常用的一種方法;

表格設計應清楚表明對應關系,簡潔明了,有利於發現要相關量之間的關系,並且在標題欄中還要註明各個量的名稱、符號、數量級和單位等;

而作圖法則能夠醒目地表達各個物理量間的變化關系,從圖線上可以簡便求出實驗需要的某些結果,一些復雜的函數關系也可以通過一定的變化用圖形來表現。

想要了解更多關於數據分析的問題,可以咨詢一下CDA認證中心。CDA行業標准由國際范圍數據領域的行業專家、學者及知名企業共同制定並每年修訂更新,確保了標準的公立性、權威性、前沿性。通過CDA認證考試者可獲得CDA中英文認證證書。

『陸』 統計學中常用的數據分析方法有哪些

1、描述統計


描述統計是通過圖表或數學方法,對數據資料進行整理、分析,並對數據的分布狀態、數字特徵和隨機變數之間關系進行估計和描述的方法。描述統計分為集中趨勢分析、離中趨勢分析和相關分析三大部分。


2、假設檢驗


參數檢驗:參數檢驗是在已知總體分布的條件下(一般要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗。


非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一股性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。


3、信服分析


介紹:信度(Reliability)即可靠性,它是指採用同樣的方法對同一對象重復測量時所得結果的一致性程度。


信度指標多以相關系數表示,大致可分為三類:穩定系數(跨時間的一致性),等值系數(跨形式的一致性)和內在一致性系數(跨項目的一致性)。信度分析的方法主要有以下四種:重測信度法、復本信度法、折半信度法、α信度系數法。

『柒』 數據分析的六種基本分析方法

數據分析的六種基本分析方法:

1、對比分析法:常用於對縱向的、橫向的、最為突出的、計劃與實際的等各種相關數據的。例如:今年與去年同期工資收入的增長情況、3月CPI環比增長情況等。

2、趨勢分析法:常用於在一段時間周期內,通過分析數據運行的變化趨勢(上升或下降),為未來的發展方向提供幫助。例如:用電量的季節性波動、股市的漲跌趨勢等。

3、相關分析法:常用於分析兩個或多個變數之間的性質以及相關程度。例如:氣溫與用電量的相關性、運動量大小與體重的相關性等。

4、回歸分析法:常用於分析一個或多個自變數的變化對一個特定因變數的影響程度,從而確定其關系。例如:氣溫、用電設備、用電時長等因素對用電量數值大小的影響程度、工資收入的高低對生活消費支出大小的影響程度等。

5、描述性分析法:常用於對一組數據樣本的各種特徵進行分析,以便於描述樣本的各種及其所代表的總體的特徵。例如:本月日平均用電量、上海市工資收入中位數等。

6、結構分析法:常用於分析數據總體的內部特徵、性質和變化規律等。例如:各部分用電量占總用電的比重、生活消費支出構成情況等。

閱讀全文

與習慣用數據分析方法相關的資料

熱點內容
活魚袋安裝方法 瀏覽:523
治療股骨頭康復的方法 瀏覽:409
如何diy寶寶棉鞋方法圖解 瀏覽:358
海竿連接魚鉤方法 瀏覽:411
薑汁沉澱問題解決方法 瀏覽:508
居住用地土壤檢測方法和標准 瀏覽:7
受賄罪的研究方法 瀏覽:609
美安鈣粉使用方法兒童 瀏覽:306
水平安裝接地體的方法 瀏覽:961
用繩子做電梯簡單方法 瀏覽:303
魅藍6手機usb在哪裡設置方法 瀏覽:979
審計的技術方法內容是什麼意思 瀏覽:993
假性分手的最佳方法 瀏覽:274
膝蓋長骨刺治療方法 瀏覽:430
婦科念珠菌治療方法 瀏覽:479
手機360清理緩存在哪裡設置方法 瀏覽:474
諧波治理方法有哪些 瀏覽:52
查找問題最常用的兩種方法 瀏覽:360
千層南瓜饅頭的製作方法和步驟 瀏覽:872
髖關節炎的症狀和治療方法 瀏覽:821