一次函數,圖像是一條直線,兩點確定一條直線,所以只要確定兩個坐標點,就能用直尺畫出一個一次函數的圖像。
兩個坐標點,我們通常採用一次函數與 x 軸、y 軸的交點,相應就是 y 值為0、x 值為0 ;
如果是正比例函數,通過原點 (0,0),我們就再看看 x 值為1 的坐標;
假如題目中已經給出這個一次函數的一些數值,可直接得到兩個坐標點,我們就可以不再計算 x 值為0、y 值為0 的坐標值,不再利用與兩軸的交點,直接畫出函數的直線。
㈡ 畫一次函數圖像的一般步驟是什麼
畫一次函數圖像一般是採用兩點法:
y=kx十b
令x=0,則y=b
令y=0,則x=一b/k
過(0,b)和(一b/k,0)兩點做直線,即為y=kx十b圖像。
㈢ 一次函數的圖象怎麼畫
1、首先畫出橫縱坐標。
(3)研究一次函數圖像的基本方法擴展閱讀:
函數性質
1、y的變化值與對應的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等於0,且k,b為常數)。
2、當x=0時,b為函數在y軸上的交點,坐標為(0,b)。當y=0時,該函數圖象在x軸上的交點坐標為(-b/k,0)。
3、k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。
4、當b=0時,一次函數圖象變為正比例函數,正比例函數是特殊的一次函數。
5、函數圖象性質:當k相同,且b不相等,圖像平行;當k不同,且b相等,圖象相交於Y軸;當k互為負倒數時,兩直線垂直。
6、平移時:上加下減在末尾,左加右減在中間。
㈣ 一次函數怎麼解
1、記牢一次函數基本解析式y=kx+b(k≠0),熟悉①k>0、b>0,②k>0、b<0,③k<0、b>0,④k<0、b>0時等四種情況的函數圖象。
2、求一次函數解析式時,將已知點的坐標代入一次函數基本解析式,求出k、b值,寫出一次函數解析式。
3、求與已知一次函數圖象平行或垂直的一次函數解析式。當兩個一次函數解析式中的k值相同,b值不同時,所求一次函數與已知一次函數圖象平行;當兩個一次函數解析式中的k值互為負倒數時,所求一次函數與已知一次函數圖象垂直。
4、求兩個一次函數的交點,可通過將這兩個一次函數解析式中右邊含x的代數式相等求出x值,然後 代入其中一個解析式求出y值。
5、對於數形結合題,注意用學過的全等三角形的知識進行轉化。
一次函數有三種表示方法,如下:
1、解析式法:用含自變數x的式子表示函數的方法叫做解析式法。
2、列表法:把一系列x的值對應的函數值y列成一個表來表示的函數關系的方法叫做列表法。
3、圖像法:用圖象來表示函數關系的方法叫做圖象法。
(4)研究一次函數圖像的基本方法擴展閱讀:
函數性質
1、y的變化值與對應的x的變化值成正比例,比值為k。
即:y=kx+b(k≠0)(k不等於0,且k,b為常數)。
2、當x=0時,b為函數在y軸上的交點,坐標為(0,b)。
當y=0時,該函數圖象在x軸上的交點坐標為(-b/k,0)。
3、k為一次函數y=kx+b的斜率,k=tanθ(角θ為一次函數圖象與x軸正方向夾角,θ≠90°)。
4、當b=0時(即y=kx),一次函數圖象變為正比例函數,正比例函數是特殊的一次函數。
5、函數圖象性質:當k相同,且b不相等,圖像平行;
當k不同,且b相等,圖象相交於Y軸;
當k互為負倒數時,兩直線垂直。
6、平移時:上加下減在末尾,左加右減在中間。
當平面直角坐標系中兩直線平行時,其函數解析式中k的值(即一次項系數)相等;
當平面直角坐標系中兩直線垂直時,其函數解析式中k的值互為相反數。
關於平面直角坐標系中兩直線垂直時,其函數解析式中K值互為相反數的證明:
如圖,這2個函數互相垂直,但若直接證明,存在困難,不易理解,如果平移平面直角坐標系,使這2個函數的交點交於原點,就會更簡單。就像這一樣,可以設這2個函數的表達式分別為;
y=ax,y=bx。
在x正半軸上取一點(z,0)(便於計算),做與y軸平行的直線,如圖,可知OC=z,AC=a*z,BC=b*z,由勾股定理可得:
OA=√z^2+(a*z)^2
OB=√z^2+(b^z)^2
又有OA^2+OB^2=AB^2,得
z^2+(az)^2+z^2+(bz)^2=(az-bz)^2(因為b小於0,故為az-bz)化簡得:
z^2+a^2*z^2+z^2+b^2*z^2=a^2*z^2-2ab*z^2+b^2*z^2
2z^2=-2ab*z^2
ab=-1
即k=-1
所以兩個K值的乘積為-1。
注意:與y軸平行的直線沒有函數解析式,與x軸平行的直線的解析式為常函數,故上述性質中這兩種直線除外。