1. 九大常用數據分析方法 帶大家了解一下這些干貨吧
1、直接評判法
直接評判法即根據經驗直接判斷數據的好壞並給予評判,通常用於內部過往運營狀況評估,如評估近期閱讀量是否過低,評判近期銷售量是否異常,評估當日文章推送量是否正常。
直接評判法有兩個必要的條件:一是運營者有一定的新媒體運營經驗,能夠對跳出率,閱讀量等有正確的評估;二是經過加工處理的數據足夠直觀,可以直接代表某項數據的優缺點。
2、對比分析法
對比分析法,是將兩個或兩個以上的數據進行對比,分析差異進而揭示這些數據所代表的規律。
對比分析法包括橫向比較及縱向比較。橫向比較即同一時間下不同總體指標的對比,如今日頭條同領域作者文章閱讀量對比,粉絲數對比等;縱向比較不同時間條件下同一總體指標的對比,如本月文章閱讀量與上月閱讀量進行對比,本月粉絲增長數與上月增長數進行對比等。
通過對比分析,可以直接觀察到目前的運營水平,一方面找到當前已經處於優秀水平的方面,後續予以保持;另一方面及時發現當前的薄弱環節,重點突破。
3、分組分析法
分組分析法是指通過一定的指標,將對象統計分組並計算和分析,以便於深入了解所要分析對象的不同特徵,性質及相互關系的方法。
分組分析法遵循相互獨立,完全窮盡的枚舉分析法原則。所謂相互獨立,即分組之間不能有交叉,組別之間具有明顯的差異性,每個數據只能歸屬於某一組;所謂完全窮盡,即分組中不要遺漏任何數據,保持完整性,各組的空間足以容納總體的所有數據。
4、結構分析法
結構分析法是在統計分組的基礎上,將組內數據與總體數據之間進行對比的分析方法。結構分析法分析各組部分佔總體的比例,屬於相對指標。
例如,新媒體運營團隊可以統計粉絲所在的地域分布,統計出各個地方粉絲的佔比情況,此情景便屬於結構分析法。
5、平均分析法
例如,在分析今日頭條的文章閱讀量時,藉助Excel導出的數據可以快速找到閱讀量大於平均值的文章,接下來可以繼續挖掘這些文章的標題,排版,配圖等規律,便於後續內容質量的提升。
6、矩陣分析法
矩陣分析法是一種定量分析問題的方法,它是指以數據兩個重要指標作為分析依據,並將這兩個指標作為橫,縱坐標軸,構成四個象限,從而找出解決問題的辦法,為運營者提供數據參考。
例如,某餐飲企業的大眾點評評價分析,可以藉助四個象限「緊急且重要,重要但不緊急,緊急但不重要,不緊急也不重要」進行矩陣分析,並重點處理「緊急且重要」的事項。
7、漏斗圖分析法
漏斗圖分析法因展現形式如漏斗,故而得名。漏斗圖可以對文章閱讀量,產品購買量等情況進行逐層分析,展示整個關鍵路徑中每步的轉化情況。
重要強調的是,單一的漏斗圖難以衡量各個環節的好壞,運營者可以結合本節介紹的「對比分析法」,對同一環節不同時間對比,評估運營效果。
8、雷達圖分析法
雷達圖常用於指數分析,即通過對新媒體賬號的內容質量,領域專注等不同維度的計算而得出的客觀評分結果。分數越高,代表賬號的質量越好。可以利用雷達圖進行分析的指數,包括今日頭條指數,大魚號星級指數,百家號指數等。
9、回歸分析法
回歸分析法是通過研究事物發展變化的因果關系來預測事物發展走向,它是研究變數間相互關系的一種定量預測方法,又稱回歸模型預測法或因果法。
例如,將今日頭條粉絲數據導出到Excel表格,對累計粉絲數進行一元線性分析,就可以嘗試預測某個時間的粉絲量。
2. 數據分析的方法有哪些
數據分析的方法有:對比分析法,分組分析法,預測分析法,漏斗分析法,AB測試分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假設性分析法。
1.對比分析法:對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。
橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。
數據分析方法是數據統計學當中應用非常廣泛的方法,具體方法有很多種,具體採用的時候因人而異。
3. 如何進行大數據分析及處理
聚雲化雨的處理方式
聚雲:探碼科技全面覆蓋各類數據的處理應用。以數據為原料,通過網路數據採集、生產設備數據採集的方式將各種原始數據凝結成雲,為客戶打造強大的數據存儲庫;
化雨:利用模型演算法和人工智慧等技術對存儲的數據進行計算整合讓數據與演算法產生質變反應化雲為雨,讓真正有價值的數據流動起來;
開渠引流,潤物無聲:將落下「雨水」匯合成數據湖泊,對數據進行標注與處理根據行業需求開渠引流,將一條一條的數據支流匯合集成數據應用中,為行業用戶帶來價值,做到春風化雨,潤物無聲。
4. 【數據分析師必備】九大常用數據分析方法匯總(上)
定義: 描述性統計是一類統計方法的匯總,揭示了調查總體的數據分布特性。描述性統計分析要對調查總體所有變數的有關數據進行統計性描述,主要包括數據的頻數分析、集中趨勢分析、離散程度分析、分布以及一些基本的統計圖形。
應用:
①數據的頻數分析。在數據的預處理部分,利用頻數分析和交叉頻數分析可以檢驗異常值和缺失值。
②數據的集中趨勢分析。用來反映數據的一般水平,常用的指標有平均值、中位數和眾數等。
③數據的離散程度分析。主要是用來反映數據之間的差異程度,常用的指標有方差和標准差。
④數據的分布。在統計分析中,通常要假設樣本所屬總體的分布屬於正態分布,因此需要用偏度和峰度兩個指標來檢查樣本數據是否符合正態分布。
⑤繪制統計圖。用圖形的形式來表達數據,比用文字表達更清晰、更簡明。在SPSS軟體里,可以很容易地繪制各個變數的統計圖形,包括條形圖、餅圖和折線圖等。
定義: 回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析按照涉及的自變數的多少,分為回歸和多重回歸分析;按照自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
應用:
如果在回歸分析中,只包括一個自變數X和一個因變數Y,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。一個經濟指標的數值往往受許多因素影響,若其中只有一個因素是主要的,起決定性作用,則可用一元線性回歸進行預測分析。一元線性回歸用途廣泛,可處理科學技術的實驗數據,也能用於經濟現象:統計數據的分析預測。
如果回歸分析中包括兩個或兩個以上的自變數,且因變數和自變數之間是線性關系,則稱為多元線性回歸分析。事實上,一種現象常常是與多個因素相聯系的,由多個自變數的最優組合共同來預測或估計因變數,比只用一個自變數進行預測或估計更有效,更符合實際。因此多元線性回歸比一元線性回歸的實用意義更大。
使用條件:分析多個自變數X與因變數Y的關系,X與Y都必須是連續型變數,因變數Y或其殘差必須服從正態分布。
線性回歸模型要求因變數是連續的正態分布變數,且自變數和因變數呈線性關系,而Logistic回歸模型對因變數的分布沒有要求,一般用於因變數是離散時的情況。常用於預測分類變數,其中主要是二分類變數。
例如,探討影響用戶復購的關鍵因素,並根據關鍵因素預測用戶復購行為發生的概率等。選擇兩組人群,一組是復購組,一組是非復購組,兩組人群必定具有不同的特徵與購買行為等。因此因變數就為是否復購,值為「是」或「否」,自變數就可以包括很多了,如年齡、性別、購買頻率、客單價、平均下單周期、購買品類佔比情況等。自變數既可以是連續的,也可以是分類的。然後通過logistic回歸分析,可以得到自變數的權重,從而可以大致了解到底哪些因素是產生復購行為的關鍵因素。同時可以根據關鍵因素預測用戶復購的的可能性。從而可以通過運營策略去加大復購的可能性,提升店鋪銷量。
④其他回歸方法:非線性回歸、有序回歸、Probit回歸、加權回歸等。
定義 :方差分析用於兩個及兩個以上樣本均數差別的顯著性檢驗。 由於各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。
使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態分布總體;各總體方差相等。
例如,在飼料養雞增肥的研究中,某研究所提出的三種飼料配方A、B、C。應該選擇哪種飼料,對雞增肥效果好且便宜?目的是為了比較三種飼料配方下雞的平均重量是否相等。特選24隻相似的雛雞隨機均分為三組,每組各喂一種飼料,60天定期觀測它們的重量並記錄。得到三組雛雞重量數據,比較這三組數據之間是否存在顯著性差異。若相等,可任選一種飼料,特別是可以選廉價飼料;若不等,應選增肥效果好的飼料。同理,可運用到相似場景中。
應用 :
單因素方差分析是用來研究一個控制變數的不同水平是否對觀測變數產生了顯著影響。這里,由於僅研究單個因素對觀測變數的影響,因此稱為單因素方差分析。
例如,分析不同施肥量是否給農作物產量帶來顯著影響,考察地區差異是否影響婦女的生育率,研究學歷對工資收入的影響等。這些問題都可以通過單因素方差分析得到答案。
多因素方差分析用來研究兩個及兩個以上控制變數是否對觀測變數產生顯著影響。這里,由於研究多個因素對觀測變數的影響,因此稱為多因素方差分析。多因素方差分析不僅能夠分析多個因素對觀測變數的獨立影響,更能夠分析多個控制因素的交互作用能否對觀測變數的分布產生顯著影響,進而最終找到利於觀測變數的最優組合。
例如,分析不同品種、不同施肥量對農作物產量的影響時,可將農作物產量作為觀測變數,品種和施肥量作為控制變數。利用多因素方差分析方法,研究不同品種、不同施肥量是如何影響農作物產量的,並進一步研究哪種品種與哪種水平的施肥量是提高農作物產量的最優組合。
通過上述的分析可以看到,不論是單因素方差分析還是多因素方差分析,控制因素都是可控的,其各個水平可以通過人為的努力得到控制和確定。但在許多實際問題中,有些控制因素很難人為控制,但它們的不同水平確實對觀測變數產生了較為顯著的影響。
例如,在研究農作物產量問題時,如果僅考察不同施肥量、品種對農作物產量的影響,不考慮不同地塊等因素而進行方差分析,顯然是不全面的。因為事實上有些地塊可能有利於農作物的生長,而另一些卻不利於農作物的生長。不考慮這些因素進行分析可能會導致:即使不同的施肥量、不同品種農作物產量沒有產生顯著影響,但分析的結論卻可能相反。這個時候就用到協方差分析。
定義: 假設檢驗(Hypothesis Testing)是數理統計學中根據一定假設條件由樣本推斷總體的一種方法。具體作法是:根據問題的需要對所研究的總體作某種假設,記作H0;選取合適的統計量,這個統計量的選取要使得在假設H0成立時,其分布為已知;由實測的樣本,計算出統計量的值,並根據預先給定的 顯著性水平進行檢驗 ,作出拒絕或接受假設H0的判斷。常用的假設檢驗方法有u-檢驗法、t檢驗法、χ2檢驗法(卡方檢驗)、F-檢驗法,秩和檢驗等。
應用:
參數檢驗對參數平均值、方差進行的統計檢驗,參數檢驗是推斷統計的重要組成部分。
非參數檢驗是統計分析方法的重要組成部分,它與參數檢驗共同構成統計推斷的基本內容。參數檢驗是在總體分布形式已知的情況下,對總體分布的參數如均值、方差等進行推斷的方法。但是,在數據分析過程中,由於種種原因,人們往往無法對總體分布形態作簡單假定,此時參數檢驗的方法就不再適用了。非參數檢驗正是一類基於這種考慮,在總體方差未知或知道甚少的情況下,利用樣本數據對總體分布形態等進行推斷的方法。由於非參數檢驗方法在推斷過程中不涉及有關總體分布的參數,因而得名為"非參數"檢驗。
非參數檢驗不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一般性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。
主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。
歡迎前往關注數據寶典公眾號,更多數據分析知識分享,以及案例總結分享~~
在數據分析道路上,學無止境,終身成長。
5. 常用的數據分析方法有哪些
常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。
6. 大數據的分析手段有哪些
1.分類
分類是一種根本的數據剖析辦法,數據依據其特色,可將數據對象劃分為不同的部分和類型,再進一步剖析,可以進一步發掘事物的實質。
2.回歸
回歸是一種運用廣泛的計算剖析辦法,可以通過規定因變數和自變數來確認變數之間的因果關系,樹立回歸模型,並依據實測數據來求解模型的各參數,然後點評回歸模型是否可以很好的擬合實測數據,如果可以很好的擬合,則可以依據自變數作進一步猜測。
3.聚類
聚類是依據數據的內涵性質將數據分紅一些聚合類,每一聚合類中的元素盡可能具有相同的特性,不同聚合類之間的特性不同盡可能大的一種分類辦法,其與分類剖析不同,所劃分的類是不知道的,因而,聚類剖析也稱為無指導或無監督的學習。
4.類似匹配
類似匹配是通過必定的辦法,來計算兩個數據的類似程度,類似程度一般會用一個是百分比來衡量。類似匹配演算法被用在許多不同的計算場景,如數據清洗、用戶輸入糾錯、推薦計算、剽竊檢測體系、主動評分體系、網頁查找和DNA序列匹配等范疇。
5.頻頻項集
頻頻項集是指案例中頻頻出現的項的集合,如啤酒和尿不濕,Apriori演算法是一種發掘關聯規矩的頻頻項集演算法,其核心思想是通過候選集生成和情節的向下關閉檢測兩個階段來發掘頻頻項集,現在已被廣泛的應用在商業、網路安全等范疇。
關於大數據的分析手段有哪些,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。