導航:首頁 > 研究方法 > 紅外吸收光譜分析是什麼分析方法

紅外吸收光譜分析是什麼分析方法

發布時間:2023-03-01 01:28:47

A. 紅外吸收光譜法和紫外可見分子吸收光譜法的區別是什麼

紅外吸收光譜法和紫外可見吸收光譜法都可以用於物質定性和定量的測定。只是所需要光譜不同。
紫外:180~380,可見380~750,紅外,750~2000 nm , 所在的波段不同。

B. 紅外吸收光譜法和紫外可見分子吸收光譜法的區別

1、吸收的波長不一樣。紅外吸收光譜法中,樣品吸收的是紅外波段的電磁輻射;紫外可見光譜法中,樣品吸收的是紫外-可見波段的電磁輻射。

2、儀器原理有區別。紅外光譜法應用的是傅立葉變換紅外光譜,紅外光經過邁克爾遜干涉儀發生干涉後照射樣品,採集到樣品的干涉圖再經過傅立葉變換得到樣品的光譜; 而紫外-可見吸收光譜是用雙光路分別檢測樣品和參比的透過光強,然後做差得到的樣品光譜。

3、光譜反映的意義不同。紅外吸收光譜能給出樣品分子的振-轉結構信息,可以用於鑒定分子結構; 紫外-可見光譜給出的是分子的電子態躍遷信息,用於確定分子的激發性質。

(2)紅外吸收光譜分析是什麼分析方法擴展閱讀:

物質的紫外吸收光譜基本上是其分子中生色團及助色團的特徵,而不是整個分子的特徵。如果物質組成的變化不影響生色團和助色團,就不會顯著地影響其吸收光譜,如甲苯和乙苯具有相同的紫外吸收光譜。

另外,外界因素如溶劑的改變也會影響吸收光譜,在極性溶劑中某些化合物吸收光譜的精細結構會消失,成為一個寬頻。所以,只根據紫外光譜是不能完全確定物質的分子結構,還必須與紅外吸收光譜、核磁共振波譜、質譜以及其他化學、物理方法共同配合才能得出可靠的結論。

C. 如何進行紅外吸收光譜定性分析

光譜分析是一種根據物質的光譜來鑒別物質及確定它的化學組成,結構或者相對含量的方法。按照分析原理,光譜技術主要分為吸收光譜,發射光譜和散射光譜三種。

按照被測位置的形態來分類,光譜技術主要有原子光譜和分子光譜兩種。紅外光譜屬於分子光譜,有紅外發射和紅外吸收光譜兩種,常用的一般為紅外吸收光譜。

相關信息:

當分子中各原子以同一頻率、同一相位在平衡位置附近作簡諧振動時,這種振動方式稱簡正振動(例如伸縮振動和變角振動)。分子振動的能量與紅外射線的光量子能量正好對應,因此當分子的振動狀態改變時,就可以發射紅外光譜,也可以因紅外輻射激發分子而振動而產生紅外吸收光譜。

分子的振動和轉動的能量不是連續而是量子化的。但由於在分子的振動躍遷過程中也常常伴隨轉動躍遷,使振動光譜呈帶狀。所以分子的紅外光譜屬帶狀光譜。分子越大,紅外譜帶也越多。

D. 紅外光譜的原理

紅外光譜的原理

當一束具有連續波長的紅外光通過物質,物質分子中某個基團的振動頻率或轉動頻率和紅外光的頻率一樣時,分子就吸收能量由原來的基態振(轉)動能級躍遷到能量較高的振(轉)動能級,分子吸收紅外輻射後發生振動和轉動能級的躍遷,該處波長的光就被物質吸收。

所以,紅外光譜法實質上是一種根據分子內部原子間的相對振動和分子轉動等信息來確定物質分子結構和鑒別化合物的分析方法。將分子吸收紅外光的情況用儀器記錄下來,就得到紅外光譜圖。紅外光譜圖通常用波長(λ)或波數(σ)為橫坐標,表示吸收峰的位置,用透光率(T%)或者吸光度(A)為縱坐標,表示吸收強度。

當外界電磁波照射分子時,如照射的電磁波的能量與分子的兩能級差相等,該頻率的電磁波就被該分子吸收,從而引起分子對應能級的躍遷,宏觀表現為透射光強度變小。電磁波能量與分子兩能級差相等為物質產生紅外吸收光譜必須滿足條件之一,這決定了吸收峰出現的位置。

紅外吸收光譜產生的第二個條件是紅外光與分子之間有偶合作用,為了滿足這個條件,分子振動時其偶極矩必須發生變化。這實際上保證了紅外光的能量能傳遞給分子,這種能量的傳遞是通過分子振動偶極矩的變化來實現的。

並非所有的振動都會產生紅外吸收,只有偶極矩發生變化的振動才能引起可觀測的紅外吸收,這種振動稱為紅外活性振動;偶極矩等於零的分子振動不能產生紅外吸收,稱為紅外非活性振動。

分子的振動形式可以分為兩大類:伸縮振動和彎曲振動。前者是指原子沿鍵軸方向的往復運動,振動過程中鍵長發生變化。後者是指原子垂直於化學鍵方向的振動。通常用不同的符號表示不同的振動形式,例如,伸縮振動可分為對稱伸縮振動和反對稱伸縮振動,分別用 Vs 和Vas 表示。彎曲振動可分為面內彎曲振動(δ)和面外彎曲振動(γ)。

從理論上來說,每一個基本振動都能吸收與其頻率相同的紅外光,在紅外光譜圖對應的位置上出現一個吸收峰。實際上有一些振動分子沒有偶極矩變化是紅外非活性的;另外有一些振動的頻率相同,發生簡並;還有一些振動頻率超出了儀器可以檢測的范圍,這些都使得實際紅外譜圖中的吸收峰數目大大低於理論值。

組成分子的各種基團都有自己特定的紅外特徵吸收峰。不同化合物中,同一種官能團的吸收振動總是出現在一個窄的波數范圍內,但它不是出現在一個固定波數上,具體出現在哪一波數,與基團在分子中所處的環境有關。

引起基團頻率位移的因素是多方面的,其中外部因素主要是分子所處的物理狀態和化學環境,如溫度效應和溶劑效應等。

對於導致基團頻率位移的內部因素,迄今已知的有分子中取代基的電性效應:如誘導效應、共軛效應、中介效應、偶極場效應等;機械效應:如質量效應、張力引起的鍵角效應、振動之間的耦合效應等。

紅外光譜的分區

通常將紅外光譜分為三個區域:近紅外區(0.75~2.5μm)、中紅外區(2.5~25μm)和遠紅外區(25~300μm)。一般說來,近紅外光譜是由分子的倍頻、合頻產生的;中紅外光譜屬於分子的基頻振動光譜;遠紅外光譜則屬於分子的轉動光譜和某些基團的振動光譜。

由於絕大多數有機物和無機物的基頻吸收帶都出現在中紅外區,因此中紅外區是研究和應用最多的區域,積累的資料也最多,儀器技術最為成熟。通常所說的紅外光譜即指中紅外光譜。

應用

紅外光譜對樣品的適用性相當廣泛,固態、液態或氣態樣品都能應用,無機、有機、高分子化合物都可檢測。此外,紅外光譜還具有測試迅速,操作方便,重復性好,靈敏度高,試樣用量少,儀器結構簡單等特點,因此,它已成為現代結構化學和分析化學最常用和不可缺少的工具。

紅外光譜在高聚物的構型、構象、力學性質的研究以及物理、天文、氣象、遙感、生物、醫學等領域也有廣泛的應用。

紅外吸收峰的位置與強度反映了分子結構上的特點,可以用來鑒別未知物的結構組成或確定其化學基團;而吸收譜帶的吸收強度與化學基團的含量有關,可用於進行定量分析和純度鑒定。

另外,在化學反應的機理研究上,紅外光譜也發揮了一定的作用。但其應用最廣的還是未知化合物的結構鑒定。

紅外光譜不但可以用來研究分子的結構和化學鍵,如力常數的測定和分子對稱性的判據,而且還可以作為表徵和鑒別化學物種的方法。

例如氣態水分子是非線性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液態水分子的紅外光譜中,由於水分子間的氫鍵作用,使v1和v3的伸縮振動譜帶疊加在一起,在3402厘米處出現一條寬譜帶,它的變角振動v2位於1647厘米。

在重水中,由於氘的原子質量比氫大,使重水的v1和v3重疊譜帶移至2502厘米處,v2為1210厘米。以上現象說明水和重水的結構雖然很相近,但紅外光譜的差別是很大的。

紅外光譜具有高度的特徵性,所以採用與標准化合物的紅外光譜對比的方法來做分析鑒定已很普遍,並已有幾種標准紅外光譜匯集成冊出版,如《薩特勒標准紅外光柵光譜集》收集了十萬多個化合物的紅外光譜圖。近年來又將些這圖譜貯存在計算機中,用來對比和檢索。

E. IR的紅外光譜法(IR)

紅外光譜法又稱「紅外分光光度分析法」。簡稱「IR」,分子吸收光譜的一種。利用物質對紅外光區的電磁輻射的選擇性吸收來進行結構分析及對各種吸收紅外光的化合物的定性和定量分析的一法。被測物質的分子在紅外線照射下,只吸收與其分子振動、轉動頻率相一致的紅外光譜。對紅外光譜進行剖析,可對物質進行定性分析。化合物分子中存在著許多原子團,各原子團被激發後,都會產生特徵振動,其振動頻率也必然反映在紅外吸收光譜上。據此可鑒定化合物中各種原子團,也可進行定量分析。
1.紅外光譜法的一般特點
特徵性強、測定快速、不破壞試樣、試樣用量少、操作簡便、能分析各種狀態的試樣、分析靈敏度較低、定量分析誤差較大。
2.對樣品的要求
①試樣純度應大於98%,或者符合商業規格
這樣才便於與純化合物的標准光譜或商業光譜進行對照
多組份試樣應預先用分餾、萃取、重結晶或色譜法進行分離提純,否則各組份光譜互相重疊,難予解析
②試樣不應含水(結晶水或游離水)
水有紅外吸收,與羥基峰干擾,而且會侵蝕吸收池的鹽窗。所用試樣應當經過乾燥處理
③試樣濃度和厚度要適當
使最強吸收透光度在5~20%之間
3.定性分析和結構分析
紅外光譜具有鮮明的特徵性,其譜帶的數目、位置、形狀和強度都隨化合物不同而各不相同。因此,紅外光譜法是定性鑒定和結構分析的有力工具
①已知物的鑒定
將試樣的譜圖與標准品測得的譜圖相對照,或者與文獻上的標准譜圖(例如《葯品紅外光譜圖集》、Sadtler標准光譜、Sadtler商業光譜等)相對照,即可定性
使用文獻上的譜圖應當注意:試樣的物態、結晶形狀、溶劑、測定條件以及所用儀器類型均應與標准譜圖相同
②未知物的鑒定
未知物如果不是新化合物,標准光譜己有收載的,可有兩種方法來查對標准光譜:
A.利用標准光譜的譜帶索引,尋找標准光譜中與試樣光譜吸收帶相同的譜圖
B.進行光譜解析,判斷試樣可能的結構。然後由化學分類索引查找標准光譜對照核實
解析光譜之前的准備:
了解試樣的來源以估計其可能的范圍
測定試樣的物理常數如熔沸點、溶解度、折光率、旋光率等作為定性的旁證
根據元素分析及分子量的測定,求出分子式
計算化合物的不飽和度Ω,用以估計結構並驗證光譜解析結果的合理性解析光譜的程序一般為:
A.從特徵區的最強譜帶入手,推測未知物可能含有的基團,判斷不可能含有的基團
B.用指紋區的譜帶驗證,找出可能含有基團的相關峰,用一組相關峰來確認一個基團的存在
C.對於簡單化合物,確認幾個基團之後,便可初步確定分子結構
D.查對標准光譜核實
③新化合物的結構分析
紅外光譜主要提供官能團的結構信息,對於復雜化合物,尤其是新化合物,單靠紅外光譜不能解決問題,需要與紫外光譜、質譜和核磁共振等分析手段互相配合,進行綜合光譜解析,才能確定分子結構。
④鑒定細菌,研究細胞和其它活組織的結構
4.定量分析
紅外光譜有許多譜帶可供選擇,更有利於排除干擾。紅外光源發光能量較低,紅外檢測器的靈敏度也很低,ε<103
吸收池厚度小、單色器狹縫寬度大,測量誤差也較大
☆對於農葯組份、土壤表面水份、田間二氧化碳含量的測定和穀物油料作物及肉類食品中蛋白質、脂肪和水份含量的測定,紅外光譜法是較好的分析方法

F. 紅外光譜法如何進行定量分析

紅外定量分析的原理和可見紫外光譜的定量分析一樣,也是基於比耳朗勃特(Beer-Lambert)定律。

比爾—朗伯定律數學表達式:A=lg(1/T)=Kbc

A為吸光度,T為透射比(透光度),是出射光強度(I)比入射光強度(I0).

K為摩爾吸光系數.它與吸收物質的性質及入射光的波長λ有關.

c為吸光物質的濃度,單位為mol/L,b為吸收層厚度,單位為cm。【b也常用L替換,含義一致】

(6)紅外吸收光譜分析是什麼分析方法擴展閱讀:

紅外光譜有許多譜帶可供選擇,更有利於排除干擾。&Oslash; 紅外光源發光能量較低,紅外檢測器的靈敏度也很低,ε<103。

&Oslash; 吸收池厚度小、單色器狹縫寬度大,測量誤差也較大。

☆對於農葯組份、土壤表面水份、田間二氧化碳含量的測定和穀物油料作物及肉類食品中蛋白質、脂肪和水份含量的測定,紅外光譜法是較好的分析方法。

閱讀全文

與紅外吸收光譜分析是什麼分析方法相關的資料

熱點內容
醫院卵泡發育的檢測方法 瀏覽:387
冰箱鋁管對鋁焊接方法和技巧 瀏覽:169
手工包的製作方法和步驟 瀏覽:326
圖片解釋方法 瀏覽:576
納米晶粒徑檢測方法 瀏覽:444
小學低年級的教學方法與策略 瀏覽:758
電錘拆石頭的正確操作方法 瀏覽:394
生白術的食用方法 瀏覽:422
四芯鋁芯電纜接頭連接方法 瀏覽:414
雞感冒了怎麼辦最有效的土方法 瀏覽:788
織帽子的方法視頻 瀏覽:99
土工試驗資料試表22的計算方法 瀏覽:218
移植後快速暖宮方法 瀏覽:926
分析方法A 瀏覽:545
口腔麻醉消毒的方法不包括哪些 瀏覽:572
8x88簡便計算方法 瀏覽:908
小說對話翻譯研究方法 瀏覽:737
咸豐元寶寶源當百真假鑒別方法 瀏覽:552
翡翠新武器鑒別方法 瀏覽:643
競爭的定價方法常用在哪裡 瀏覽:566