❶ 大數據分析方法
大數據分析方法:
1、描述型分析:
這種方法向數據分析師提供了重要指標和業務的衡量方法。例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是「描述型分析」方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。
2、診斷型分析:
描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。
3、預測型分析:
事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。
4、指令型分析:
數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對「發生了什麼」、「為什麼會發生」和「可能發生什麼」的分析,來幫助用戶決定應該採取什麼措施。
大數據分析優點:
(1)及時解析故障、問題和缺陷的根源。
(2)為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。
(3)分析所有SKU,以利潤最大化為目標來定價和清理庫存。
(4)根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。
(5)從大量客戶中快速識別出金牌客戶。
❷ 數據分析的幾種常用方法21-10-27
幾種常見的數據分析分析方法:
1.周期性分析(基礎分析)
What :主要是從日常雜亂的數據中,發現周期性出現的現象,而從避免或改善問題的發生。常見的兩種周期:自然周期和生命周期。
需要注意的點:雖然周期性分析主要針對時間序列,但不全是,例如公眾號的文章閱讀走勢不僅和日期(工作日或周末)相關,也和文章類型相關。
例如:銷售中3,6,9,12月,由於績效考核出現的峰值
重點節假日對和交付的影響
產品銷售的季節性影響(例如北方下半年的採暖產品,入夏空調的銷售旺季等)
How: 自然後期的時間維度,根據分析的需求,可從年(同環比,業績達成、和行業趨勢對比),月(淡旺季、銷售進度、生產預測),周(一般較少),日(工作日,非工作日的差異分析),時(時間分布,工作時段,上下班高峰,晚上,主要和大眾消費行為分析相關)進行展開
生命周期一種常見的分析就「商品生命周期」,商品銷量隨上市時間的變化,通過時間軸+指標走勢組合出來的。這種分析對快消品或者產品迭代速度很快的商品(典型如手機)是比較重要的,可以用於監控產品的市場表現,對照市場活動可以量化活動效果以及產品線的經營情況,如持續跟進,則可針對性的提出產品上市的建議。
2.矩陣分析(重要分析方法)
矩陣分析是數據分析中非常重要的分析方法。主要解決分析領域的一個非常致命的核心問題:「到底指標是多少,才算好」。
平均數是一個非常常用的數據維度,但是單一維度,並不能充分評價好壞。例如考核銷售,如果只考核業務銷售業績,那麼業務人員一定會傾向賣利潤低的引流產品。那種利潤高,價格高,不容易賣的利潤型產品就沒人賣了,最後銷售越多,公司的利潤反而下降了。這個時候通過兩個維度:銷售規模和銷售利潤,構建交叉矩陣,就能將業務業績進行更有效的區分。
舉個簡單的例子,一個銷售團隊,10名銷售一個月內開發的客戶數量,產生的總業績用矩陣分析法進行分析(具體數據略):
第一步:先對客戶數量、業績求平均值
第二步:利用平均值,對每個銷售人員的客戶數量、業績進行分類
第三步:區分出多客戶+高業績,少客戶+高業績,多客戶+低業績,少客戶+低業績四類
矩陣分析把關鍵業務目標拆分為兩個維度,每個維度進行高低分類,進而可以對目標進行更加立體的描述。維度高低分類多採用 平均值作為參考 值。
注意:有兩個場景,是不適合用矩陣分析法:
一:有極大/極小值影響了平均值的時候,一般出現極大/極小值的時候,可以用: 分層分析法 。
二:兩個指標高度相關的時候,例如用戶消費金額與消費頻次,兩個指標天生高度相關,此時數據分布會集中在某一個或兩個區域,矩陣分析法的業務解讀能力接近0,可採用 相關分析法
3.結構分析
What: 結構分析是將分析的目標,向下分解,主要用於發現問題。
例如銷售分析,可以按照區域—省—市 一級級的分解,分解之後可以更好的看出影響銷售業績的影響因素在哪個位置。
結構分析可以有多個維度,取決於我們需要分析的方向。例如還是銷售分析,可以從產品構成進行拆解,也可用從業務形態拆解
How:如何進行結構分析?
第一步:定出要分析的關鍵指標(一般是業績、用戶量、DAU、利潤等等)
第二步:了解關鍵指標的構成方式(比如業績,由哪些用戶、哪些商品、哪些渠道組成)
第三步:跟蹤關鍵指標的走勢,了解指標結構變化情況
第四步:在關鍵指標出現明顯上升/下降的時候,找到變化最大的結構分類,分析問題
注意:結構分析的不足
結構分析法是一種:知其然,不知其所以然的方法。只適用於發現問題,不能解答問題
4.分層分析
What: 分層分析,是為了應對 平均值失效 的場景。典型的平均值失效例如平均工資,很多人都被「代表」。這個時候需要把收入群體分成幾類,例如土豪,普通百姓,窮光蛋等,後面進行分析時就比較清楚了。業內也有一些不同的叫法,比如應用於商品的,叫ABC分類,應用於用戶的,叫用戶分層,應用於業務的,叫二八法則。本質都是一回事。
How:如何進行分層分析
1.明確分層對象和分層指標
例如:想區分用戶消費力,分層對象就是:用戶,分層指標就是:消費金額
想區分商品銷售額,分層對象就是:商品,分層指標就是:銷售金額
想區分部銷售額,分層對象就是:分部,分層指標就是:銷售收入
2.查看數據,確認是否需要分層。分層是應對平均值失效的情況的,存在極值影響的情況,則適合分層。
3.設定分層的層級。最好的解決辦法是老闆拍板,其次可以用「二八原則」,以上述銷售業績分層為例,可以先從高到低排序,然後把累積業績佔80%的人選出來,作為「第1層級(優等)」,其他的歸為「第2層級(次等)」。有時如果顆粒度不夠,也可以用「二四六八十」法則」。
如何應用分層
分層的最大作用是幫我們看清楚:到底誰是主力 ,誰是吊車尾。從而指導業務,從人海戰術向精兵簡政思考。
根據分層的結果找出差距,進而提出(假設)差異背後可能的原因,通過其它方式進行
應用 :客戶分析,目前系統中客戶超5000個,為了更好的了解客戶結構,可以通過分層分析的方法對這5000個客戶進行分層,分層的方式通過年銷售規模,可以按照累計規模排序,一般採用4-6個層級,每個層級可以給一個標簽。例如王者客戶,腰部客戶,mini客戶等。分層後,便可以針對性的進行分析,例如客戶層級的銷售佔比,變動,各層級客戶的銷售構成,結合其它方法就可以有較全面的分析
5.漏斗分析(待補充)
6.指標拆解(待補充)
7.相關性分析(待補充)
What :兩個(或多個)因素之間的關系。例如員工人數與銷售額,市場推廣與銷售業績,天氣和銷售表現等
很多因素我們直觀的感覺到之間有聯系,相互影響,但具體的關系是什麼,如何產品影響的,可以通相關性分析來量化。
例如,客戶開拓中拜訪客戶的次數和客戶成交是否有關系?
拜訪次數多,表明客戶也感興趣,所以成功幾率大
拜訪這么多,客戶還不成交,成功幾率不大
客戶成交和拜訪關系不太大,主要看你是否能打動他
How :兩種聯系:直接關系,間接關系
直接關系 :整體指標與部分指標的關系——結構分析,例如銷售業績與各中心的業績
主指標與子指標的關系——拆解分析,例如總銷售規模和客戶數量與客戶銷售規模
前後步驟間的關系——漏斗分析:例如銷售目標和項目覆蓋率,儲備率,簽約等因素間的關系
聯系中,指標之間出現一致性的變化,基本是正常,如果出現相反的變動,則需要關注,這可能是問題所在
間接關系 :要素之間沒有直接的聯系,但存在邏輯上的連接。例如推廣多了,知名度上市,進而銷售額上升。
由於關系非顯性,需要通過處理進行評價,常用的就是散點圖和excel中的相關系數法
在明確相關性後,就可以通過改變其中一個變數來影響和控制另一個變數的發展。
注意:相關性分析也存在很大的局限。主要體現在相關性並不等同因果性。例如十年前你在院子里種了一顆樹,你發現樹每天的高度和中國近十年GDP的增速高度相關,然後這兩者間並沒有什麼實質性的聯系。此次相關性分析過程中一定注意要找到關聯的邏輯自洽。
8.標簽分析(待補充)
9.
❸ 數據分析常用的分析方法有哪些
1. 描述型分析
這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。
例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。
2. 診斷型分析
描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。
良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。
3. 預測型分析
預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。
預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。
4. 指令型分析
數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。
❹ 一文了解數據分析的方法都有哪些
常用的數據分析方法有以下幾種:
一、漏斗分析法
漏斗分析法能夠科學反映用戶行為狀態,以及從起點到終點各階段用戶轉化率情況,是一種重要的分析模型。漏斗分析模型已經廣泛應用於網站和APP的用戶行為分析中,例如流量監控、CRM系統、SEO優化、產品營銷和銷售等日常數據運營與數據分析工作中。
二、留存分析法
留存分析法是一種用來分析用戶參與情況和活躍程度的分析模型,考察進行初始行為的用戶中,有多少人會進行後續行為。從用戶的角度來說,留存率越高就說明這個產品對用戶的核心需求也把握的越好,轉化成產品的活躍用戶也會更多,最終能幫助公司更好的盈利。
三、分組分析法
分組分析法是根據數據分析對象的特徵,按照一定的標志(指標),把數據分析對象劃分為不同的部分和類型來進行研究,以揭示其內在的聯系和規律性。
四、矩陣分析法
矩陣分析法是指根據事物(如產品、服務等)的兩個重要屬性(指標)作為分析的依據,進行分類關聯分析,找出解決問題的一種分析方法,也稱為矩陣關聯分析法,簡稱矩陣分析法。
想要了解更多關於數據分析方法的問題,可以咨詢一下CDA認證中心。CDA行業標准由國際范圍數據領域的行業專家、學者及知名企業共同制定並每年修訂更新,確保了標準的公立性、權威性、前沿性。通過CDA認證考試者可獲得CDA中英文認證證書。
❺ 數據分析的三個常用方法是什麼
一個產品,如果你不能衡量它,你就不能了解它,自然而然,你就無法改進它。數據說到底,就是這樣一個工具——通過數據,我們可以衡量產品,可以了解產品,可以在數據驅動下改進產品。數據分析和數據處理本身是一個非常大的領域,這里主要總結一些我個人覺得比較基礎且實用的部分,在日常產品工作中可以發揮比較大作用。
本文主要討論一些數據分析的三個常用方法:
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。
4. 小結
趨勢,對比,細分,基本包含了數據分析最基礎的部分。無論是數據核實,還是數據分析,都需要不斷地找趨勢,做對比,做細分,才能得到最終有效的結論。
在此我向大家推薦一個大數據開發交流圈:
658558542 ( ☛點擊即可加入群聊 )
裡面整理了一大份學習資料,全都是些干貨,包括大數據技術入門,大數據離線處理、數據實時處理、Hadoop 、Spark、Flink、推薦系統演算法以及源碼解析等,送給每一位大數據小夥伴,讓自學更輕松。這里不止是小白聚集地,還有大牛在線解答!歡迎初學和進階中的小夥伴一起進群學習交流,共同進步!
最後祝福所有遇到瓶頸的大數據程序員們突破自己,祝福大家在往後的工作與面試中一切順利
❻ 常用數據分析處理方法有哪些
常用的數據分析方法有:聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析。
1、聚類分析:聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。
2、因子分析:因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。
3、相關分析:相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系。
4、對應分析:對應分析也稱關聯分析、R-Q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。
5、回歸分析:回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析。
6、方差分析:又稱「變異數分析」或「F檢驗」,方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。
想要了解更多關於數據分析的相關信息,推薦選擇十方融海。十方融海作為技術創新型企業,堅持源頭核心技術創新,為用戶提供聽得懂、學得會、用得上的產品。該機構的解決方案和社會價值獲得了主流媒體報道,與廈門大學、深圳大學、華南理工大學等高校達成校企合作,探索產教融合、成人教育新模式。用科技推動教育改革,讓教育創造美好生活。
❼ 大數據的核心技術有哪些
大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、資料庫、數據倉庫、機器學習、並行計算、可視化等。
1、數據採集與預處理:
Flume NG實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據;
Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。
2、數據存儲:
Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。
HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。
3、數據清洗:MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算
4、數據查詢分析:
Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供 HQL(Hive SQL)查詢功能。
Spark 啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。
5、數據可視化:對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。
❽ 數據分析的方法有哪些
數據分析是指通過統計分析方法對收集到的數據進行分析,將數據加以匯總、理解並消化,通過數據分析可以幫助人們作出判斷,根據分析結果採取恰當的對策,常用的數據分析方法如下:
將收集到的數據通過加工、整理和分析的過程,使其轉化為信息,通常來說,數據分析常用的方法有列表法和作圖法,所謂列表法,就是將數據按一定規律用列表方式表達出來,是記錄和處理數據最常用的一種方法;
表格設計應清楚表明對應關系,簡潔明了,有利於發現要相關量之間的關系,並且在標題欄中還要註明各個量的名稱、符號、數量級和單位等;
而作圖法則能夠醒目地表達各個物理量間的變化關系,從圖線上可以簡便求出實驗需要的某些結果,一些復雜的函數關系也可以通過一定的變化用圖形來表現。
想要了解更多關於數據分析的問題,可以咨詢一下CDA認證中心。CDA行業標准由國際范圍數據領域的行業專家、學者及知名企業共同制定並每年修訂更新,確保了標準的公立性、權威性、前沿性。通過CDA認證考試者可獲得CDA中英文認證證書。