導航:首頁 > 研究方法 > 環氧烷烴溶劑中除水的方法研究

環氧烷烴溶劑中除水的方法研究

發布時間:2023-02-19 00:52:58

❶ 化學試驗中除水的乾燥劑有哪些

為了保持葯品的乾燥或對製得的氣體進行乾燥,必須使用乾燥劑. 常用的乾燥劑有三類: 第一類為酸性乾燥劑,有濃硫酸、五氧化二磷、無水硫酸銅等; 第二類為鹼性乾燥劑,有固體燒鹼、石灰和鹼石灰(氫氧化鈉和氧化鈣的混合物)等; 第三類是中性乾燥劑,如無水氯化鈣、無水硫酸鎂等.常用乾燥劑序號 名稱 分子式 吸水能力 乾燥速度 酸鹼性 再生方式 1 硫酸鈣 CaSO4 小 快 中性 在163℃(脫水溫度)下脫水再生 2 氧化鋇 BaO - 慢 鹼性 不能再生 3 五氧化二磷 P2O5 大 快 酸性 不能再生 4 氯化鈣(熔融過的) CaCl2 大 快 含鹼性雜質 200℃下烘乾再生 5 高氯酸鎂 Mg(ClO4)2 大 快 中性 烘乾再生(251℃分解) 6 三水合高氯酸鎂 Mg(ClO4)2·3H2O - 快 中性 烘乾再生(251℃分解) 7 氫氧化鉀(熔融過的) KOH 大 較快 鹼性 不能再生 8 活性氧化鋁 Al2O3 大 快 中性 在(110~300)℃下烘乾再生 9 濃硫酸 H2SO4 大 快 酸性 蒸發濃縮再生 10 硅膠 SiO2 大 快 酸性 120℃下烘乾再生 11 氫氧化鈉(熔融過的) NaOH 大 較快 鹼性 不能再生 12 氧化鈣 CaO - 慢 鹼性 不能再生 13 硫酸銅 CuSO4 大 - 微酸性 150℃下烘乾再生 14 硫酸鎂 MgSO4 大 較快 中性、有的微酸性 200℃下烘乾再生 15 硫酸鈉 Na2SO4 大 慢 中性 烘乾再生 16 碳酸鉀 K2CO3 中 較慢 鹼性 100℃下烘乾再生 17 金屬鈉 Na - - 不能再生 18 分子篩 結晶的鋁硅酸鹽 大 較快 酸性 烘乾,溫度隨型號而異 註:使用高氯酸鹽時務必小心,碳、硫、磷及一切有機物都不能與之接觸,否則會發生猛烈爆炸,造成危險.乾燥適用條件序號 名稱 適用物質 不適用物質 備注 1 鹼石灰BaO、CaO 中性和鹼性氣體,胺類,醇類,醚類 醛類,酮類,酸性物質 特別適用於乾燥氣體,與水作用生成Ba(OH)2、Ca(OH)2 2 CaSO4 普遍適用 - 常先用Na2SO4作預乾燥劑 3 NaOH、KOH 氨,胺類,醚類,烴類(乾燥器),肼類,鹼類 醛類,酮類,酸性物質 容易潮解,因此一般用於預乾燥 4 K2CO3 胺類,醇類,丙酮,一般的生物鹼類,酯類,腈類,肼類,鹵素衍生物 酸類,酚類及其他酸性物質 容易潮解 5 CaCl2 烷烴類,鏈烯烴類,醚類,酯類,鹵代烴類,腈類,丙酮,醛類,硝基化合物類,中性氣體,氯化氫HCl,CO2 醇類,氨NH3,胺類,酸類,酸性物質,某些醛,酮類與酯類 一種價格便宜的乾燥劑,可與許多含氮、含氧的化合物生成溶劑化物、絡合物或發生反應;一般含有CaO等鹼性雜質 6 P2O5 大多數中性和酸性氣體,乙炔,二硫化碳,烴類,各種鹵代烴,酸溶液,酸與酸酐,腈類 鹼性物質,醇類,酮類,醚類,易發生聚合的物質,氯化氫HCl,氟化氫HF,氨氣NH3 使用其乾燥氣體時必須與載體或填料(石棉絨、玻璃棉、浮石等)混合;一般先用其他乾燥劑預乾燥;本品易潮解,與水作用生成偏磷酸、磷酸等 7 濃H2SO4 大多數中性與酸性氣體(乾燥器、洗氣瓶),各種飽和烴,鹵代烴,芳烴,不飽和的有機化合物,醇類,酮類,酚類,鹼性物質,硫化氫H2S,碘化氫HI,氨氣NH3 不適宜升溫乾燥和真空乾燥 8 金屬Na 醚類,飽和烴類,叔胺類,芳烴類 氯代烴類(會發生爆炸危險),醇類,伯、仲胺類及其他易和金屬鈉起作用的物質,一般先用其他乾燥劑預乾燥;與水作用生成NaOH與H2 9 Mg(ClO4)2 含有氨的氣體(乾燥器) 易氧化的有機物質 大多用於分析目的,適用於各種分析工作,能溶於多種溶劑中;處理不當會發生爆炸危險 10 Na2SO4、MgSO4 普遍適用,特別適用於酯類、酮類及一些敏感物質溶液 - 一種價格便宜的乾燥劑;Na2SO4常作預乾燥劑 11 硅膠 置於乾燥器中使用 氟化氫 加熱乾燥後可重復使用 12 分子篩 溫度100℃以下的大多數流動氣體;有機溶劑(乾燥器) 不飽和烴 一般先用其他乾燥劑預乾燥;特別適用於低分壓的乾燥 13 CaH2 烴類,醚類,酯類,C4及C4以上的醇類 醛類,含有活潑羰基的化合物 作用比LiAlH4漫,但效率相近,且較安全,是最好的脫水劑之一,與水作用生成Ca(OH)2、H2 14 LiAlH4 烴類,芳基鹵化物,醚類 含有酸性H,鹵素,羰基及硝基等的化合物 使用時要小心.過剩的可以慢慢加乙酸乙酯將其破壞;與水作用生成LiOH、Al(OH)3與H2適用於液體的乾燥劑序號 液體名稱 適用乾燥劑 1 飽和烴類 P2O5,CaCl2,H2SO4(濃),NaOH,KOH,Na,Na2SO4,MgSO4,CaSO4, CaH2,LiAlH4,分子篩 2 不飽和烴類 P2O5,CaCl2,NaOH,KOH,Na2SO4,MgSO4,CaSO4,CaH2,LiAlH4 3 鹵代烴類 P2O5,CaCl2,H2SO4(濃),Na2SO4,MgSO4,CaSO4 4 醇 類 BaO,CaO,K2CO3,Na2SO4,MgSO4,CaSO4,硅膠 5 酚 類 Na2SO4,硅膠 6 醛 類 CaCl2,Na2SO4,MgSO4,CaSO4,硅膠 7 酮 類 K2CO3,Na2SO4,MgSO4,CaSO4,硅膠 8 醚 類 BaO,CaO,NaOH,KOH,Na,CaCl2,CaH2,LiAlH4,Na2SO4,MgSO4, CaSO4,硅膠 9 酸 類 P2O5,Na2SO4,MgSO4,CaSO4,硅膠 10 酯 類 K2CO3,CaCl2,Na2SO4,MgSO4,CaSO4,CaH2,硅膠 11 胺 類 BaO,CaO,NaOH,KOH,K2CO3,Na2SO4,MgSO4,CaSO4,硅膠 12 肼 類 NaOH,KOH,Na2SO4,MgSO4,CaSO4,硅膠 13 腈 類 P2O5,K2CO3,CaCl2,Na2SO4,MgSO4,CaSO4,硅膠 14 硝基化合物 CaCl2,Na2SO4,MgSO4,CaSO4,硅膠 15 二硫化碳 P2O5,CaCl2,Na2SO4,MgSO4,CaSO4,硅膠 16 鹼 類 NaOH,KOH,BaO,CaO,Na2SO4,MgSO4,CaSO4,硅膠適用於氣體的乾燥劑序號 氣體名稱 適用乾燥劑 1 H2 P2O5,CaCl2,H2SO4(濃),Na2SO4,MgSO4,CaSO4,CaO,BaO,分子篩 2 O2 P2O5,CaCl2, Na2SO4,MgSO4,CaSO4,CaO,BaO,分子篩 3 N2 P2O5,CaCl2,H2SO4(濃),Na2SO4,MgSO4,CaSO4,CaO,BaO,分子篩 4 O3 P2O5,CaCl2 5 Cl2 CaCl2,H2SO4(濃) 6 CO P2O5,CaCl2,H2SO4(濃),Na2SO4,MgSO4,CaSO4,CaO,BaO,分子篩 7 CO2 P2O5,CaCl2,H2SO4(濃),Na2SO4,MgSO4,CaSO4, 分子篩 8 SO2 P2O5,CaCl2,Na2SO4,MgSO4,CaSO4,分子篩 9 CH4 P2O5,CaCl2,H2SO4(濃),Na2SO4,MgSO4,CaSO4,CaO,BaO, NaOH,KOH,Na,CaH2,LiAlH4,分子篩 10 NH3 Mg(ClO4)2,NaOH,KOH,CaO,BaO,Mg(ClO4)2,Na2SO4,MgSO4, CaSO4,分子篩 11 HCl CaCl2,H2SO4(濃) 12 HBr CaBr2 13 HI CaI2 14 H2S CaCl2 15 C2H4 P2O5 16 C2H2 P2O5,NaOH

❷ 環氧樹脂防水塗料怎麼清洗

清洗方法:

1、要是油性的用苯類溶劑,如甲苯、二甲苯,水性樹脂就用酒精、乙醇類的洗。

4、用丙酮浸泡膠層可以變軟。清洗方法:用無水酒精或丙酮擦拭即可。

❸ 有機合成工藝與開發——溶劑的選擇

5.1 引言

溶劑的類別:

a. 質子性溶劑,或氫鍵供體類溶劑(路易斯酸),例如,水、乙醇、乙酸和氨;

b. 氫鍵受體類溶劑(路易斯鹼),例如,水、三乙胺、乙酸乙酯、丙酮和DMF;

c. 極性非質子溶劑,或稱為「非羥基溶劑」,例如,DMSO、DMF和二甲基乙醯胺DMAc;

d. 氯代烷烴類溶劑,例如,二氯甲烷、氯仿和四氯化碳;

e. 氟碳類溶劑,例如,六氟異丙醇;

f. 烴類溶劑,例如,己烷、異辛烷和甲苯;

g. 離子液體;

h. 超臨界氣體,例如,超臨界二氧化碳。

溶質被溶劑所包圍的過程叫做溶劑化,水的溶劑化則被稱為水合。溶劑化值指的是包圍一個離子的溶劑分子數。一般來說,溶劑化程度隨著電荷數的增加和離子半徑的減小而增大。一個物種的反應活性隨著溶劑化程度減小而提高,因為溶劑化的分子屏蔽了反應物,分散了電荷。某分子的其中一個部位可能更易於被另一種溶劑所溶劑化。比如,偶極性的非質子溶劑,例如DMSO,溶劑化陽離子,從而使另一部分的陰離子更容易反應。冠醚,常用作相轉移催化劑(PTC),也類似地和陽離子形成配合物而使陰離子部位更具有活性。在溶劑混合物中兩種溶劑可溶劑化分子的不同部分,使得組成混合溶劑後溶解性能比各自任何一種單一溶劑好。有個明顯的例子,氫氧化鈉的溶劑化程度的降低是如何影響其反應活性的:固體氫氧化鈉(三分子水合物)的鹼性比15%氫氧化鈉(11分子水合物)鹼性增強50000倍。(PTC據說能產生「裸露的陰離子」,但是少量的水是必須的,特別是對於固-液相轉移反應。在研發相轉移催化過程中,水分的含量是一個關鍵的參數。)溶劑化是選擇溶劑要考慮的眾多重要因素之一。

謹慎選擇溶劑的重要性:

a. 給設備和操作人員提供安全、無害的大規模生產條件;

b. 溶劑的理化性質,如極性、沸點、水混溶性,影響反應的速率、兩相的分離、結晶的效果及通過共沸或乾燥固體除去揮發性組分;

c. 其他理化性質,如混合物的黏度影響傳質和傳熱、副產物的形成和物理運輸;

d. 回收和套用溶劑的難易程度,極大地影響產品成本(CoG)。

最好的溶劑應該能使產物從反應中直接結晶析出來。

為快速工藝放大選擇溶劑的最關鍵原則是均相反應通常比非均相反應快得多,也容易放大。如果必須是非均相的條件,必須選擇溶劑和反應條件使反應混合物是液態而易混勻的。(對於傳統的氫化反應,由於是液-固-氣分散體系,有效的攪拌是相當重要的。)許多情況下,產物的分離能驅動反應持續進行。最好是能結晶而不是形成沉澱或油狀物,這種情況下會捲入原料。

對於有些反應過程,非均相的條件是有利的。非均相的條件可以加速反應或者減少產物在反應條件下的降解。

相轉移催化劑通常用在兩種不混溶的溶劑中,反應發生在有機相或界面。有時固-液相轉移催化反應也用到鹼類,諸如碳酸鉀懸浮在反應體系中。

在某些已開發的非均相的反應中原料會隨著反應的進行而溶解。某些反應全程都是懸濁液。選擇對組分有一定溶解性的溶劑可提高反應效率,如往水相中的反應添加乙醇或者DMSO。某些反應,非均相的條件也可能增加副反應。

醯胺的大規模製備通常用到Schotten-Baumann反應,具體來說,將胺與醯氯或酸酐縮合,再用鹼溶液中和生成的酸。如果不加鹼,等摩爾量的胺和醯氯反應的理論收率只有50%。如果不加有機溶劑,產物醯胺會析出來並且夾雜原料,所以一般都用有機溶劑。用與水不混溶的有機溶劑可以減少易水解的試劑和產物的降解。

【二氯甲烷中制備醯氯,需要更加仔細的操作(Vilsmeier試劑能溶於二氯甲烷,但反應放熱厲害,且產物容易消旋)。DMF不適合制備醯氯,DMF和氯化試劑能形成二甲氨基甲醯氯(DMCC),在μg/mg水平就有動物致癌性】

在pH 8以上進行Schotten-Baumann偶聯反應,醯氯容易水解,並可見吖內酯的形成及消旋;而pH<7時,由於胺被質子化了,偶聯反應進行得很慢。反應最好的條件是用緩沖劑調pH到8,加醯氯的同時滴加1 M氫氧化鈉以維持pH在7~8之間。

一些學術研究使用的溶劑在工業生產中也許並不受歡迎。

具有較低閃點(在該溫度下,蒸氣能夠被引燃)的溶劑會因安全問題而避免使用。易燃溶劑及溶在這些溶劑裡面的試劑,如甲基鋰的乙醚溶液,會被限制在地面運輸。

極性是溶劑的一個關鍵參數。介電常數能衡量溶劑傳導電荷的能力。Gutmann供體數從本質上衡量溶劑分子的路易斯鹼的鹼性。Hansen溶解度參數考慮了范德華力、偶極作用和氫鍵,Hildebrand參數則發展了它。Reichardt的π-π*吸收位置漂移的溶劑化顯色。

強極性溶劑能穩定極性染料基態的能量,導致更大的π-π*越前。在溶劑中的染料顏色能指示溶解它的單一溶劑或混合溶劑的極性。

選擇溶劑的時候,溶劑的沸點很重要。高沸點的溶劑,例如二甲苯,因為將溶劑殘留去除到可接受的水平存在潛在的困難,所以很少選擇它來分離原料葯。高沸點、水溶性溶劑更容易通過萃取除去。

產物富集萃取時,乙酸乙酯被認為是一種比乙酸異丙酯更具反應活性的溶劑。實驗室存在的乙酸乙酯含有過氧化物,可以氧化亞碸、胺類和酮類,後者可以得到Beayer-Villiger氧化產物【酮在過氧化物(如過氧化氫、過氧化羧酸等)氧化下得到相應的酯的化學反應。醛可以進行同樣的反應,氧化的產物是相應的羧酸】;氧化劑最有可能是過氧乙酸,由乙酸乙酯水解得到的乙醇和空氣生成。

乙酸異丙酯比乙酸乙酯更穩定,可與氫氧化鈉水溶液共同作用將鹽酸鹽游離出來。當用乙酸乙酯和2M氫氧化鈉處理時,使用碳酸氫鈉水溶液就不會發生上述情況。制備硫酸鹽時,要將乙酸乙酯改成乙酸異丙酯,因為後者在酸性條件下更難水解。用乙酸乙酯萃取伯胺,形成了一種乙醯胺,產物能萃取到二氯甲烷中。(後面一種情況,反應產物是一種甲氧基乙醯胺,在Sukuzi偶聯的鹼性條件下,甲氧基乙醯胺會發生部分水解。通過重結晶除去乙醯胺雜質很難。)氨、正丁胺和乙酸乙酯發生乙醯化的速度快於乙酸異丙酯,而萃取時水的存在能加速胺類的乙醯化。一般來說,用乙酸異丙酯萃取比用乙酸乙酯得到的雜質少。

NMP被認為環境友好,但因生殖毒性被重新劃入二類溶劑。

2-甲基四氫呋喃在有機金屬反應中很有用。購買的2-甲基四氫呋喃含有高達400 μg/mL的BHT作為穩定劑添加的,另外一種則不含添加劑;2-甲基四氫呋喃暴露在空氣中生成過氧化合物的速度比四氫呋喃稍快。2-甲基四氫呋喃和HCl反應比四氫呋喃慢。3M的甲基鋰溶液,溶劑可以是2-甲基四氫呋喃,也可以是二乙氧基甲烷(DEM)。

甲基乙基酮(MEK)會形成活性過氧化物,引發聚合和其他反應。在氧氣存在下,MEK可用於氧化Co(II)到Co(III),是一種很有用的氧化劑。盡管MEK有合適的沸點,能與水形成共沸,也要考慮到它生成過氧化物的能力。

甲基異丁基酮(MIBK)對底層大氣中臭氧的形成來說是一種高容量的溶劑,被認為生成大氣臭氧的能力比乙酸異丙酯強,因此要避免使用MIBK。

5.2 使用共沸物時選擇的溶劑

共沸物是恆定沸點的混合物,有著固定的摩爾組成。共沸物由兩種、三種或者更多組分組成,可以是均相或非均相的。重要的共沸物是沸點降低的共沸物,即混合物的沸點比任意組分的沸點都要低。(熟悉的共沸物中,濃鹽酸是個例外,形成沸點升高的共沸物。)所有非均相的共沸物的沸點都降低。不同的液體如果沸點接近就可以形成共沸物。許多有機溶劑可以與水形成共沸物,可利用這一性質除水。

共沸物的主要價值在於能有效去除反應混合物中易揮發的組分。共沸除去易揮發組分可以促進反應進行。共沸物有益於分離後處理。六甲基二硅烷(酸催化脫三甲基硅烷保護基的副產物)能和醚類、醇類、乙腈及三甲基硅醇形成共沸物。即使共沸物不能完全除去雜質組分,也能降低沸點。共沸物如果能夠回收套用,也是較為經濟的溶劑。

當一對共沸物的組成接近1:1時,從其中一種溶劑中分離出另一種溶劑更容易。

通常減壓蒸餾時會進一步減少餾出物中較少組分的比例,如乙酸乙酯-水共沸物減壓蒸餾過程,這也被稱為「破壞型共沸物」。在異丙醇-水共沸物中,沒有發現該現象。

5.3 選擇溶劑以增加反應速率,減少雜質生成

一般來說,增加溶劑極性的效果取決於原料或中間體中是否有高濃度電荷(電荷/體積)。(有時描述為電荷局部定域較大,而電荷局部定域較小有時稱為電荷分散。)極性溶劑優先溶解離子或電荷濃度高的中間體。如果中間體中電荷濃度比原料高,極性溶劑能夠穩定中間體和促進其生成,因而加快反應速率。如果中間體的電荷比原料的電荷分散,極性溶劑會穩定原料,降低反應速率。自由基誘導的反應受溶劑極性的影響很小。定量的電荷局部定域/離域模型沒有考慮溶劑的其他影響,例如氫鍵、螯合作用、溫度以及反應的濃度。有時,改變溶劑也可改變反應機理。

5.4 溶劑中的雜質和反應溶劑

分子篩是最普遍有效的除水處理方法。規模化生產中,溶劑和設備一般是共沸除水,或填充過量的吸水試劑。

過氧化物可在實驗室和放大常見的溶劑中生成,如異丙醇和乙酸乙酯。溶劑暴露在空氣和光線中會產生氫過氧化物和其他過氧化物。一般來說,含有氫原子的化合物在自由基反應中易生成過氧化合物,例如叔碳、苄基型碳、烯丙基型碳、醚氧的α-碳、醛和醇。生成過氧化物後,問題就來了。例如過氧化異丙醚會在溶劑瓶口附近析出,或濃縮溶劑時過氧化物會富集。

檢查溶劑中過氧化合物的簡便檢測方法:用水潤濕過氧化檢測試紙,然後滴一滴溶劑。碘量法滴定是一種定量的方法。BHT(大約250 μg/mL)通常添加到市售的四氫呋喃和2-甲基四氫呋喃中作為安全措施。放大時,濃縮四氫呋喃和2-甲基四氫呋喃會添加BHT作為安全措施。蒸出溶劑時,可能會使作為穩定劑的BHT富集,干擾HPLC和其他分析。BHT經氧化可生成黃色的二聚物。

過氧化物除了可能引發安全問題,還能影響反應進程。

放大時還要注意靜電的蓄積,帶電荷的烴類溶劑通常是很麻煩的。非金屬添加劑,例如Statsafe,已經被開發用來減少溶劑的導電性,減少靜電釋放的風險。一般來說,烴類靜電釋放的風險比較大,例如庚烷。使用多聚物和胺類的混合物作為添加劑的溶劑生產原料葯,添加劑可能會被認為是原料葯中的雜質。當加入少量極性溶劑時,例如異丙醇,能減少靜電釋放的風險。

二氯甲烷的反應活性通常會被忽略。橋頭胺類,例如士的寧、奎寧及三乙烯二胺,尤其易與二氯甲烷發生反應,其次是甲基叔胺和仲胺。脯氨酸和二氯甲烷可以制備縮醛胺。由於氯的第二次取代比第一次快得多,吡啶很快形成縮醛胺。類似地,吡啶和二氯甲烷反應形成二吡啶鹽,第二次取代比第一次快得多。4-二甲氨基吡啶(DMAP)反應速度是吡啶的7倍。1-羥基苯並三唑(HOBt)是多肽偶聯時常用的一種催化劑,能和二氯甲烷反應。硫醇和二氯甲烷反應的活性在相轉移催化反應中被忽略。格氏試劑在無水氯化鐵和其他離子鹽的存在下,能與二氯甲烷發生反應。鎳-甜菜鹼復合物和二氯甲烷發生二次反應生成手性4-氨基谷氨酸。二氯甲烷甚至能與奧氮平、氯氮平和氧氟沙星反應,他們都有一個N-甲基哌嗪基團。也許二氯甲烷是許多化合物中都包含對稱亞甲基二胺的源頭。應該充分考慮二氯甲烷與親核試劑的反應活性。低沸點的二氯甲烷易揮發,不易儲存,在使用過程中難以達到揮發性有機化合物排放標准,使其在生產中沒有吸引力。

不要長時間儲存胺類的二氯甲烷萃取液。親核性的胺,尤其是奎寧,易和二氯甲烷反應。

四氫呋喃在酸性條件下會反應,生成開環和多聚的副產物。實驗室中用甲磺酸代替硫酸就不會生成該副產物,但20 kg規模時,發現有開環副產物。在這個條件下,二甲氧基乙烷優於四氫呋喃。四氫呋喃能和醯氯、醯溴反應。四氫呋喃和2-甲基四氫呋喃在酸性水溶液下水解速率很慢,可作萃取相。四氫呋喃和二甲氧基乙烷在氯氣存在下會聚合放熱。反應中使用2 M硼烷-四氫呋喃復合物發生過工業事故。10~50 ℃下,溶於四氫呋喃的硼烷-四氫呋喃復合物產生氫氣和硼酸三丁酯,50℃以上降解生成乙硼烷。該試劑推薦在0~5 ℃下儲存,在低於35 ℃下反應。

DMF可被酸或鹼催化,歧化生成一氧化碳和二甲胺。N-甲基吡咯烷酮和NaH在熱力學上是不穩定的。二乙氧基甲烷(DEM)在pH 2時會水解,推薦的反應條件中pH不應低於4.甲基叔丁基醚(MTBE)可在酸催化下加入叔丁醇和異丙烯生成,看起來在酸性條件下足夠穩定,可以用於後處理萃取,但40 ℃下能和濃鹽酸反應,更高溫度下能和硫酸反應。MTBE與亞硫醯胺和溴反應放熱。迴流MTBE-乙醇制備某乙酯的甲磺酸鹽時,叔丁酯從MTBE和乙酯的反應中沉澱出來。若之前的萃取液殘留MTBE,酯類的氨甲基化就很慢;副產物是異戊烯胺,由MTBE分解產物產生。硫酸介導的腈水合時,產物常常磺化。加入甲苯利於攪拌,則伯醯胺產率高;該反應條件下部分甲苯會磺化,表現為一種代替犧牲的溶劑。在仲胺存在下,使用甲基異丁基酮(MIBK)保護伯胺。

在無水的酸性條件下使用四氫呋喃時,要考慮開環形成的副產物,生產胺鹽最好用其他溶劑。

5.5 水作為溶劑

水中氫甲醯化(加氧合成過程):產物從水相中分離,只需將反應器再充滿氣體原料。溶於磺酸鹽配體的銠催化劑被束縛在水相中,損失的那部分催化劑只有十億分之一的范圍。兩相工藝使金屬試劑在水相中溶解度很高。基於聯苯二酚和鄰二氮雜菲的磺化配體也被用於水相偶聯反應。

水加速反應

在水面上的Diels-Alder反應及芳香Claisen重排相對於無溶劑反應稍有加速,比使用其他溶劑時快。加速的原因可能是因為氫鍵,增加了極性、疏水作用和其他性質。非均相條件下,反應自始至終是懸濁液,放大時需要額外小心。預期困難時原料、產物和雜質混在一起,如果放大轉化需要加大攪拌,那麼得到的是小顆粒,使得過濾和分離更加困難。水作溶劑的條件下,Click反應,水中非酸性條件下生成四氮唑。水可加速Baylis-Hillman反應,加倍4,6-二烯酮的消除。加入少量乙醇或者DMSO可加速水中的反應,這可能是由於它們起到了與表面活性劑類似的作用。

往水中加入各種表面活性劑,可形成微乳液或膠束以促進反應。羥醛反應的表面活性劑,三甲基硅基可作為保護基防止水解。水中的Sukuzi偶聯用到聚乙二醇:聚乙二醇可作為表面活性劑或相轉移催化劑溶解金屬活性組分。表面活性劑可應用於溫和的烯烴復分解反應、Sonogashira反應、Heck反應、Suzuki反應、Negishi反應以及胺化反應。

該物質一般認為是安全的(GRAS),無毒,無需處理原料葯中殘留的相轉移催化劑。水中用相轉移催化劑催化反應後,產物可萃取到有機相,含相轉移催化劑的水相可在下次反應時套用。

水最佳的應用之一是催化極性物質的反應而無需保護基。酶通常能耐受分子中的各種官能團,許多酶能發揮最好活性的前提是介質中至少部分含有水。

水既不是萬能的,也不是完美的理想溶劑,即使不需要後處理且廉價。負責任地處理水蒸氣和回收套用的費用很大。這些後處理包括反萃揮發性溶劑、活性炭吸附及生物除污,然後再排向城市用水處理裝置。此外,如果同時使用有機溶劑後處理,會喪失水中操作的優勢。

5.6 溶劑的替代

被認為是廉價「綠色」溶劑

2-甲基四氫呋喃:有機金屬試劑的反應、萃取及相轉移催化反應

二乙氧基甲烷(DEM)

1,3-丙二醇

1,2-丙二醇:可代替2-甲氧基乙醇,食品級的已用於原料葯到葯物成品。

甘油:氮雜-Michael反應,作為轉移氫化的溶劑和試劑,也可作為還原羰基的溶劑。

當親脂性的產物單獨形成一相時,甘油和丙二醇則顯示出其優點。

當反應需要高沸點溶劑時,從產物中分離溶劑就變成一個問題。DW-therm是沸點240℃的三乙氧基硅烷的混合物,用於熱環化,該溶劑可蒸餾回收;其他高沸點溶劑(DMSO、1,3,5-三異丙基苯、礦物油及四甲基亞乙基碸)效果不能滿意。高沸點、水溶性溶劑便於萃取到水中除去。丙二醇被認為是合理的溶劑,ICH沒有對它設置限制。聚乙二醇低毒,可作為輕度瀉葯,環氧乙烷的小分子衍生物,例如1,4-二氧六環,已知是有毒的。乙二醇和它的代謝產物羥基乙酸和草酸對中樞神經系統、心臟及腎臟有毒性。

二甘醇和丙二醇物理性質相似,二甘醇毒性更大。甲氧基乙醇(或稱乙二醇單甲基醚)被禁止或限制使用。[甲氧基乙酸是甲氧基乙醇毒性最大的代謝物。最廣泛用來代替甲氧基乙醇的溶劑是1-甲氧基-2-丙醇(PGME)及1-丁氧基-2-乙醇(EGBE)。]

EPA要求生產、進口貨使用14種聚乙烯醚類用於「重要的新應用」必須提前90天通知EPA。聚乙烯醚類的清單包括乙二醇二甲醚、二乙二醇二甲基醚、三甘醇二甲醚及四乙醇二甲醚(都是二甲基醚),避免使用乙二醇衍生物作為溶劑生產原料葯的倒數第二步中間體是明智的。

安全性:二乙二醇二甲醚加熱時能和金屬鈉或金屬鋁劇烈反應。NaOH介導的二甘醇在200℃下降解釀成過工業事故,估計1,2-二醇的脫水是放熱的。源於乙二醇和丙三醇溶劑中的高溫反應,應該在反應前先做個實驗室危害評估。

碳氟化合物在水中和常規有機溶劑中溶解性都不好,這一性質使其在分離和合成中得到應用。氟化的反向硅膠色譜可以用來純化氟化原料葯。全氟類烴類價格高於傳統溶劑,氟化溶劑在合成領域尚未大規模應用。三氟甲苯可以用來替代二氯甲烷,它會和強還原劑發生反應,很少應用於大規模反應。

離子液體因為其沸點較高,能夠很好地減少揮發造成的損失,被認為是一種「綠色」溶劑。在合成原料葯的最終步驟前好幾步的地方使用這些化合物,或許可以避免毒理方面的擔憂。

超臨界二氧化碳(scCO2)溶解性與正己烷相似。氫氣在scCO2中的溶解性要比在傳統溶劑中好很多,此外還證實了用於多相催化劑催化的連續非對稱氫化的可能性。原料葯中痕量的釕可以用scCO2除去,殘留的釕會被吸附在反應釜的壁上。scCO2色譜無論是用在分析分離還是制備分離中,都是非常快速和有效的。將晶體暴露在二氧化碳中,會導致晶型轉變。限制scCO2應用的主要原因是用於控制壓縮和釋放二氧化碳的設備的耗費。

5.7  無溶劑反應

在無溶劑反應中,稍過量的液體反應物作溶劑,而產物往往是非晶態的。由於反應過程中不加溶劑,反應的總量很大,這種反應在淬滅的時候,容易產生高溫。通過無溶劑反應來優化設計反應時非常有效的,特別是試圖提升反應速率,而其他方法效果都不好時。

5.8  總結與展望

溶劑的選擇需要綜合考慮各種因素,而首要的一點是保證安全。在實驗條件下,各組分的理化性質可能比溶劑的極性對反應的影響驅動力更大。當一個溶劑可以與一個比較難以除去的雜質共沸時,可用此溶劑除去這種難除的雜質。一般情況下,需要經過很多篩選實驗才能決定哪個溶劑才是某種生產過程中最理想的溶劑。

❹ 環氧樹脂乳化方法(傾盡所有)

你的關鍵是沒有找到合適的乳化劑或乳化方法。

環氧樹脂本身不溶於水,不能直接加水進行乳化,要制備穩定的水性環氧樹脂乳液,必須在體系中加入親水親油組分或者設法在其分子鏈中引入強親水鏈段。所以,環氧樹脂水性化主要是採取外加乳化劑或在環氧樹脂中引入極性基團的方法。經過長期的研究及生產實踐,環氧樹脂的水性化技術已發展得比較成熟。環氧樹脂水乳液的制備方法可分為直接法、相反轉法、自乳化法和固化劑乳化法。
最近,相反轉技術在控制乳化粒子大小上有了突破性的進展。何青峰等人採用等當量聚乙二醇10000和環氧樹脂E-20反應合成了不同分子結構的高分子非離子型乳化劑,並制備出了一系列水性環氧乳液。實驗研究表明:在催化劑存在下,於75~85℃反應合成得到的多嵌段共聚產物具有最好的乳化效果。制備的環氧乳液具有最佳的穩定性,且粒徑很小,達到300nm左右。邱東等人對不含外加乳化劑而只含固化劑的無皂相反轉體系的研究更值得關注,他們在研究方面突破了乳化必須加入乳化劑的傳統概念,採用固化劑與環氧樹脂反應生成含有機鏈段的離子對,原位制備了具有乳化作用的雙親性產物,成功實現了無皂相反轉。且合成的水基分散體系顆粒粒徑在亞微米量級(200~300nm)。說明在沒有外加乳化劑的情況下,

同樣可實現相反轉,而且能得到和有乳化劑存在時同樣完美的結果。但其研究還有不完善的地方,還需進行深入研究。

用相反轉法製得的環氧乳液粒徑小,其分散相的平均粒徑一般為1~2μm,乳液的穩定性好。只需加入占樹脂1%~10%的乳化劑就能獲得性能優良的乳液,相對其它類型的環氧樹脂乳液來說成本較低,在實際應用中有一定優勢。

自乳化方法(化學改性法)

自乳化方法是通過對環氧樹脂分子進行改性,將離子基團或極性基團引入到環氧樹脂分子的非極性鏈上,使它成為親水親油的兩親性聚合物,從而具有表面活性劑的作用。在環氧樹脂中,環氧基的存在使其具有較好的反應活性,因為環氧基為三元環,張力大,C、O電負性的不同使環具有極性,容易受到親核或親電試劑進攻而發生開環反應;分子骨架上所懸掛的羥基雖然具有一定反應活性,但由於空間位阻,其反應程度較差。自乳化法就是利用環氧樹脂中基團的反應活性將親水性鏈段或基團引入到環氧樹脂分子鏈段上,同時保證每個改性環氧樹脂分子中有2個或2個以上環氧基,所得的改性環氧樹脂不用外加乳化劑即能自行分散於水中形成乳液。其改性方法有酯化型、醚化型和接枝反應型。 2.1酯化反應型

酯化反應型是氫離子先將環氧環極化,酸根離子再進攻環氧環,使其開環。

(1)先使環氧樹脂與不飽和脂肪酸酯化製成環氧酯,再用乙烯型不飽和二元羧酸或酸酐與環氧酯加成而引進羧基,最後經胺(鹼)中和成鹽。

(2)二元羧酸(酐)和環氧樹脂鏈上的羧基或環氧基發生反應引入羧基得陰離子環氧酯,然後用叔胺中和可得穩定的水分散體。

酯化法的缺點是酯化產物中的酯鍵會隨時間增加而水解,導致體系不穩定。為避免這一缺點,可將含羧基單體通過形成碳碳鍵接枝於高相對分子質量的環氧樹脂上。

2.2醚化反應型

醚化反應型與酯化反應型不同,這一反應均是親核試劑直接進攻環氧環上的C原子,目前的方法有:

(1)將環氧樹脂和對位羥基苯甲酸甲酯反應,再水解、中和:

(2)將環氧樹脂與巰基乙酸反應,再水解、中和:

(3)將對位氨基苯甲酸與環氧樹脂反應,產物可穩定分散於合適的胺/水混合溶劑中。

張肇英等人採用此法對環氧樹脂進行改性,探索出制備改性產物乳液的條件,成功地製得了穩定的水乳液,並對制備機理和影響乳液穩定性的因素進行了研究。以改性產物為原料,制備的水性塗料漆膜性能優良。美國杜邦公司利用醚化反應研製了一種環氧樹脂水分散體系,特別適用於汽車塗料或工業塗料的底漆。

2.3接枝反應型

接枝反應型是通過自由基引發劑引發,丙烯酸接枝共聚將親水組分引入環氧樹脂,得到不易水解的水性化環氧樹脂。一般接枝單體為甲基丙烯酸、苯乙烯、丙烯酸乙/丁酯,引發劑為過氧化苯甲醯(BPO),反應後加氨水中和製得水乳液。由於分子鏈中不存在酯基,最終可製得不易水解、性能穩定的水性乳液。目前,國際上先進的乳化技術是利用自由基接枝聚合法制備自乳化核殼乳液。我國的侯佩民等人開展了這方面的工作,製得了核-殼結構的環氧酯乳液。以無乳化劑環氧酯乳液為基料的水性環氧酯防銹底漆機械穩定性好,耐水性優良,防銹性能好。最近,美國專利報道了一種新的環氧樹脂自乳化方法,利用環氧樹脂和聚合型乳化劑反應,生成了新型水性環氧樹脂。

自乳化法的主要優勢在於:首先它不存在破乳現象;其次它可以與顏填料一起研磨成色漿,這樣調色部分既可放在固化劑部分,又可放在環氧乳液部分,這比外加乳化劑型環氧樹脂乳液的制漆性能更好。

3固化劑乳化法

D.A.Dubowik等人從改變樹脂和固化劑的粒度分布出發,發明了一種新的零VOC雙組分環氧樹脂分散體。該體系呈現出I型和II型水性環氧體系的優點,尤其是在固化和乾燥過程中,其耐雨淋能力與普通水分散體系相比尤顯優勢,且具有低VOC和低成本等優點。樹脂和固化劑的溶解度參數對塗料的成膜影響較大,為使樹脂和固化劑的溶解度參數相匹配,提高環氧塗料的性能,要求固化劑具有適當的疏水性,並與樹脂有很好的相容性,為達到這一目的而開展了相關的研究。隨著目前國內外對水性環氧樹脂固化劑研究的深入,這一方法將有很大的應用前景。

❺ 水性環氧的生產工藝,以及配方,注意事項

環氧樹脂具有優良的物理、機械、電絕緣性能及對各種材料的粘接性能,廣泛應用於塗料、復合材料、澆鑄料、膠粘劑、模壓材料和注射成型材料等領域¨ 。隨著工業的發展及社會的進步,人們的環保意識逐漸增強,不含揮發性有機化合物(VOC)或少含VOC、以及不含有害空氣污染物(HAP)的體系已成為新型材料的研究方向 。近年來,以水為溶劑或分散介質的水性環氧樹脂越來越受到重視。水性環氧樹脂通常是指以微粒或液滴形式分散在以水為連續相的分散介質中而配製的穩定分散體系。一般可分為水乳型環氧樹脂膠液(環氧樹脂水乳液)以及水溶性環氧樹脂膠液(環氧樹脂水溶液)兩類,既保持了溶劑型環氧樹脂的優點,還具有合理的固化時間並
有著很高的交聯度和很大的粘度可調范圍,操作性能好,施工工具可直接用水清洗,可與其它水性聚合物體系混合使用,以及價廉、無氣味、VOC含量低、不燃,儲存、運輸和使用過程中安全性高等特點 。
隨著生產技術的不斷成熟和發展,水性環氧樹脂的應用前景良好。國內外已研究和開發了很多新的品種,並將其不斷地推廣到各個相關領域 l。
1 水性環氧樹脂的制備
水性環氧樹脂制備方法主要有以下幾種:
1.1 直接乳化法
直接乳化法又稱機械法、直接法,通過球磨機、膠體磨、超聲波振盪、高速攪拌,均質機乳化等手段將環氧樹脂磨碎,在乳化劑水溶液的作用下,再通過機械攪拌將粒子分散於水中;或將環氧樹脂和乳化劑混合,加熱到適當的溫度,在激烈的攪拌下逐漸加入水而形成乳液。可採用的乳化劑有聚氧乙烯烷芳基醚(HLB=10 9~19、5)、聚氧乙烯烷基醚(HLB=10.8~16 5)、聚氧乙烯烷基酯(HLB=9 0~16 5)等,另外也可自製活性乳化劑 】。
機械法制備水性環氧樹脂乳液的優點是工藝簡單,所需乳化劑的用量較少,但乳液中環氧樹脂分散相微粒的尺寸較大,約50/tm左右,粒子形狀不規則且粒度分布較寬,所配得的乳液穩定性差,時間一長乳液就會分層,並且乳液的成膜性能也不是很好。
1.2 相反轉法
相反轉原指多組分體系中的連續相在一定條件下相互轉化的過程,如在油/水/乳化劑體系中,當連續相由水相向油相(或從油相向水相)轉變時,在連續相轉變區,體系的界面張力最低,因而分散相的尺寸最小。通過相反轉法將高分子樹脂乳化為乳液,其分散相的平均粒徑一般為1~2 ILm。
相反轉法是一種制備高分子樹脂乳液較為有效的方法,幾乎可將所有的高分子樹脂藉助於外加乳化劑的作用並通過物理乳化的方法製得相應的乳液。用相反轉法制備水性環氧樹脂乳液的具體過程是在高速剪切作用下先將乳化劑和環氧樹脂混合均勻,隨後在一定的剪切條件下緩慢地向體系中加入蒸餾水,隨著加水量的增加,整個體系逐步由油包水向水包油轉變,形成均勻穩定的水可稀釋體系。在這一過程中,水性環氧樹脂乳液的許多性質會發生突變,如體系的粘度、導電性和表面張力等,通過測定體系乳化過程中的電導率和粘度的變化就可判斷相反轉是否完全。該乳化過程可在室溫環境下進行,對於固體環氧樹脂,則需要藉助於少量有機溶劑或進行加熱來降低環氧樹脂的本體粘度,然後再進行乳化 -8l。
有研究按一定比例將環氧樹脂和表面活性劑通過加熱及過硫酸鉀溶液催化,製得反應型環氧樹脂乳化劑溶液,大大改善了乳化劑與環氧樹脂的相容性。然後將雙酚A型環氧樹脂的乙二醇單乙醚溶液和反應型環氧樹脂乳化劑按一定比例攪拌混合均勻,滴加蒸餾水至體系的粘度突然下降,此時體系的連續相由環氧樹脂溶液相轉變為水相,發生了相反轉,繼續高速攪拌一段U?I司後加入適量蒸餾水稀釋到一定的濃度,製得水性環氧樹脂乳液 l。
1.3 自乳化法
自乳化法,又稱化學法,或化學改性法。在環氧樹脂中,環氧基的存在使其具有較好的反應活性,因為環氧環為三元環,張力大,C、0電負性的不同使該三元環具有極性,容易受到親核試劑或親電試劑進攻而發生開環反應;分子骨架上所懸掛的羥基雖然具有一定反應活性,但由於空間位阻,其反應程度較差 。。。因此可在環氧樹脂分子骨架中引入一定量的強親水性基團,如磺酸基、羧酸基等酸性基團;胺基等鹼性基團,聚醚等非離子基團。這些親水性基團能幫助環氧樹脂在水中分散,使改性樹脂具有親水親油的兩親性能,當這種改性聚合物加水進行乳化時,疏水性高聚物分子鏈就會聚集成微粒,離子基團或極性基團分布在這些微粒的表面,由於帶有同種電荷而相互排斥,只要滿足一定的動力學條件,就可形成穩定的水性環氧樹脂乳液,從而使所得的改性環氧樹脂不用外加乳化劑即可自分散於水中形成乳液。所需親水基團的最低數量與親水基團的極性大小,樹脂的結構以及平均相對分子質量有關。樹脂的相對分子質量小,相對分子質量分布寬時,其水溶性較好。因為高相對分子質量的分子在水中的擴散速度慢,且其溶液的粘度也大,增加了分子運動的阻力。而分子間的互溶效應則可使相對分子質量分布寬時的溶液的水溶性得到改善。
如用相對分子質量為4 000~20 000的雙環氧端基乳化劑與環氧當量為190的雙酚A環氧樹脂和雙酚A混合,以三苯基膦化氫為催化劑進行反應,可製得含親水性聚氧乙烯、聚氧丙烯鏈段的環氧樹脂,該樹脂不用#F;bu-~L化劑便可溶於水,且耐水性強⋯ 。
根據反應類型的不同,可將自乳化法分為以下幾類:
1.3.1 醚化反應型
由親核試劑直接進攻環氧環上的C原子即為醚化反應型。可用的方法有:將環氧樹脂和對位羥基苯甲酸甲酯反應,而後水解、中和;將環氧樹脂與巰基乙酸反應,而後水解、中和;將對位氨基苯甲酸與環氧樹脂反應,產物可穩定分散於合適的胺/水}昆合溶劑中[12l~
1.3.2 酯化反應型
酯化反應型與醚化反應型不同的是氫離子先將環氧環極化,酸根離子再進攻環氧環,使其開環。可行的方法有:用不飽和脂肪酸酯化環氧樹脂,再將所得產物與馬來酸酐反應,引入極性基;或者將不飽和脂肪酸先與馬來酸酐反應,所得中間產物與環氧樹脂發生酯化反應,然後中和產物上未反應的羧基。
在較激烈反應條件下,環氧樹脂可以和羧酸發生酯化反應,按化學計量加入二酸,可得到含一游離羧基的環氧酯,用有機胺中和即得穩定分散體:磷酸與環氧樹脂反應生成環氧磷酸酯,由於溶液有利於放熱反應進行,用環氧樹脂溶液反應可得最好結果,磷酸最好與水和醇一起逐步加入溶液中,反應極易製得二酯,二酯在醇作用下易解離成單磷酯,用胺中和,可得不易水解的較穩定水分散體。環氧樹脂與丙烯酸樹脂發生酯基轉移反應,或環氧樹脂與丙烯酸單體溶液反應,丙烯酸通過酯鍵接枝於環氧樹脂上,這兩種改性方法所得的水乳體系,大量用作罐頭內壁塗料。目前,環氧樹脂磺化水性化的報道較少,低相對分子質量的含環氧基有機物,在亞硫酸氫鈉作用下可以磺化,通過這種方法有可能將低相對分子質量的環氧樹脂改性,使其水性化。
酯化法的缺點是酯化產物的酯鍵會隨U?I司增加而水解,導致體系不穩定。為避免這一缺點,可將含羧基單體通過形成碳碳鍵接枝於高相對分子質量的環氧樹脂上 。
1.3.3 接枝型
James.T.K.Woo等人利用甲基丙烯酸單體與環氧樹脂在自由基引發劑(BPO)存在的條件下進行接枝聚合,將羧基引入環氧樹脂骨架中,製得水性環氧樹脂。並研究發現接枝位置為環氧分子鏈上的脂肪0HjC原子一O—CH:一CH—CH 一O一,接枝效率低於100% ,最後產物為未接枝的環氧樹脂、接枝的環氧樹脂和聚丙烯酸的混合物, 由於沒有酯鍵,用鹼中和,可得穩定的水乳液。引發劑用量至少為單體量的3%, 在自由基引發劑為單體量的3% ~15%范圍內,接枝率與引發劑用量呈線性關系,但過多的引發劑導致單體的自聚,或為鏈終止所消耗,接枝率不能保持原來的增加趨勢;用所得產物製得的乳液粒子的粒徑隨制備時引發劑用量的增加而變小。最後產物中未反應的環氧樹脂比原來的環氧樹脂平均相對分子質量要低,這是因為高相對分子質量的環氧樹脂有更
佳的接枝率,在高相對分子質量的環氧樹脂中(數均
相對分子質量約為10 000),大約有34個重復單元O H
l一(卜一CH廠CI{-_一CH廠0一, 則有34 x 5=170個氫原
子可被自由基離解而成為單體反應的起點,而如果使用的是低相對分子質量的環氧樹脂,如數均相對分子質量為1 000左右, 則在環氧骨架上約有2個0H一0一CH廠Cl_卜CH廠一0一單元,那麼只有1O個氫原子可作反應起點。由於這種接枝與通過酯鍵接枝於環氧骨架上不同,無需形成酯鍵,環氧官能基對其無影響,可用苯酚或苯甲酸將環氧官能基封端 。
1.3.4 開環接枝型
選羥基含量較高的環氧樹脂作骨架材料,用不飽和脂肪酸進行酯化製成環氧酯,再以不飽和二元羧酸(酐)與環氧酯的脂肪酸上的雙鍵進行自由基引發加成反應,以引進羧基。然後加鹼中和,直接加水稀釋即得水性環氧乳液。如可用亞麻油酸與環氧樹脂製成環氧酯後,與馬來酸酐進行自由基反應制備水性環氧樹脂 。
這種方法製得的粒子較細,通常為納米級,相反轉法以及直接乳化法製得的粒子較大,通常為微米級。從此意義上講,化學法雖然制備步驟多,不易操控,且成本高,但在某些方面仍具有實際意義。
1.4 固化劑乳化法
將多元胺固化劑進行擴鏈、接枝、成鹽,使其成為具有親環氧樹脂分子結構的水分散型固化劑,同時它作為陽離子型乳化劑對環氧樹脂進行乳化,兩組分混合後可製成穩定的乳液。雙酚A環氧樹脂和過量的二乙烯三胺反應,形成胺封端的環氧樹脂加成物,真空蒸餾除去多餘的二乙烯三胺,再加入單環氧基化合物將氨基上的伯氫反應掉,最後加入乙酸中和,製成酸中和的環氧樹脂固化劑。此固化劑可分散於水中,向其水溶液中直接加入環氧樹脂或環氧樹脂乳液,均可形成穩定的水乳化環氧一胺組合物,可配製水性常溫固化清漆 。
2 水性環氧樹脂體系的幾個重要參數「
2.1 粒子大小及其分布
粒子大小及其分布對分散體系的性質及塗層的性質是非常關鍵的。塗層的乾燥時間、塗層的透氣性等參量隨粒徑增大而提高;塗層的光澤、耐水性、硬度、乳液與顏料的結合力、乳液的粘度及穩定性等參量隨粒徑增大而減小。而粒子大小及分布主要取決於制備方法、設備、乳化劑類型及用量等因素。粒子越小,膜的硬化過程越慢,膜的最終硬度越大;相反,較大粒子會加速塗層的硬化過程,但最終硬度較小。所以,若調節體系的粒子大小,使其具有一定分布,不僅可以保證膜快速硬化,又能保證膜的最終硬度。由水性化體系的固化過程可知:粒子大,其表面的固化劑濃度高,導致快速固化;然而,隨著固化的進行,固化劑向微粒內部擴散的速度變慢,使粒子的內層來不及固化,導致固化不完全,降低了膜的最終硬度。相反,小粒子表面的固化劑濃度適中,固化速度慢,使固化劑有充分時間擴散到整個微粒,使之固化完全,形成均一的完全化的硬膜。
2.2 乳化劑濃度
乳化劑濃度對環氧樹脂微粒化水基化體系性質的影響也是非常顯著的,不僅影響粒子大小,而且也影響塗膜的性質,如膜的硬度。隨著乳化劑濃度的增加,粒子平均尺寸變小,但當乳化劑濃度較大時(如15PHR),進一步增加乳化劑濃度,平均粒子尺寸減小得不明顯。此外,乳化劑含量增加,塗層的硬度顯著降低。因為乳液成膜是一個由O/W變為W/0的相反轉過程,過多的乳化劑分散於塗膜中,導致膜的不均勻性;同時,乳化劑分散相起著增塑作用。
但可以想像,適量的乳化劑可以作為無機填料的表面處理劑,使無機填料與樹脂具有良好的相容性,從而提高塗膜性質。
2.3 其它重要參數 ¨
水性環氧樹脂乳液的穩定性也是一個重要參數。無論是外加乳化劑,還是自乳化環氧樹Ji~?L液,都處於熱力學不穩定狀態,尤其是外加乳化劑型乳液(包括外加反應性乳化劑所得的自乳化乳液),僅有一定的貯存期。首先,環氧分子能被水解成a一二醇,它不與胺固化劑反應;其次,大多用非離子表面活性劑乳化環氧樹脂,而由於非離子表面活性劑的濁點問題,一旦溫度升高,聚醚和水的吸附量減少,即水化層厚度降低,液滴趨向於聚結成較大粒子,最終導致兩相分離。通常環氧乳液在20℃時可貯存1年;而在40℃ ,3個月即發生相分離;6o℃時貯存,穩定期不到1個月。用固體或半固體狀環氧樹脂制
得的環氧乳液比用液體環氧樹脂製得的乳液穩定性要好,這是因為固體環氧樹脂可以製得粒徑較小的乳液。對於自乳化環氧樹脂乳液,溫度上升,乳液也會沉澱,但一旦溫度下降,經攪拌又可恢復原樣,穩定性較好。確保乳液長期貯存穩定的最好方法是選擇適宜的乳化劑(復合型乳化劑),避免極端溫度(如低於0℃ ,或高於40℃)。乳液液滴的粒徑和分布對乳液的穩定性也極為重要,小粒徑和窄分布會大大增加乳液的穩定性。
此外,乳液流變特性的研究有助於指導施工過程。比較水基體系與有機溶劑體系的粘度與固含量的關系可見:水基體系的粘度更大,尤其是在高固含量時更是如此。這是因為水基體系中微粒表層的乳化劑與水形成強相互作用,導致體系的粘彈性增加所致。

1 水性環氧樹脂乳液的制備
眾所周知,環氧樹脂的親水親油平衡值(HI B)在3左右,是一種不溶於水也難於乳化的親油性聚合物。為使其乳
化形成穩定乳液,目前國內外最常用的方法可歸結為外加乳化劑法及自乳化法。
1 1 外加乳化劑法
這是一種藉外加乳化劑使環氧樹脂乳化而形成水包油型(O/W)乳液的方法。其最主要的實施方法包括直接乳化
法及相反轉法。
(1)直接乳化法Ⅲ 又稱機械法 可用球磨機、膠體磨或均
化器等先將環氧樹脂磨碎成粉末,然後加入乳化劑水溶液,繼而再通過強烈機械攪拌將樹脂粒子分散於水中而成。也可將環氧樹脂和乳化劑混合後加熱到適當溫度,在施以激烈機械攪拌後逐漸加入水而形成乳液。乳化劑通常採用較多的有聚氧化乙烯烷基醚(HI B值為10.8-16.5)及聚氧化乙烯烷基酯(HLB值為9.0-16.5)。目前國內外陸續有許多新的乳化劑被開拓應用,如利用雙酚A環氧樹脂在路易斯酸催化下與聚乙二醇的反應產物,環氧樹脂,聚乙二醇與多元胺作用的加成產物等。直接乳化法最大特點就是工藝簡單,乳化劑用量也較少,但所得乳液中作為分散相的環氧樹脂微粒粒徑較大(約50 m)且粒徑分布較寬,形狀也不規則,乳液穩定性及成膜性相對較差。影響這~ 方法的因素頗多,除乳化劑的選擇外,高效攪拌及分散時溫度控制都是十分重要的。
(2)相反轉法 這是一種有效制備高聚物水乳液的方法,包括從油包水(W/O)到水包油(O/W )的相轉變過程,
在此過程中乳液的黏度、導電性及表面張力等諸多性質均會發生突變。在室溫高速剪切作用下先將液態環氧樹脂與乳化劑均勻混合,然後繼續在一定剪切作用下緩慢地逐步向其中加入蒸餾水,增加到一定水量後,即出現整個體系逐步由油包水型向水包油型的轉變,而形成均勻穩定並可由水稀釋的乳液。若選用高分子質量固體環氧樹脂,則需要加少量有機溶劑並加熱以降低其本黏度,繼而再行轉換和乳化。這一方法的影響因素也較多,除必須有高效的高速剪切分散的設備外,乳化劑的類型、分子質量大小、使用濃度及操作溫度等,實際上都對相反轉過程、粒徑控制及分散乳化效果有著直接影響。近來有人 對其相反轉過程流變行為及相態發展進行了研究,在相反轉點附近,體系油水相的界面張力最
小,此時產生的乳液具有最小分散相尺寸。
1.2 自乳化法
又稱化學修飾法,這是利用環氧樹脂活性基團的反應活
性將親水性基團或鏈段引入到環氧樹脂分子上而進行化學修飾改性的方法。這種具有疏水及親水兩性的環氧樹脂,有著良好的表面活性,無需添加乳化劑而具有自乳化作用,自行分散於水中形成穩定乳液。親水性基團及鏈段的引入主要是充分利用了環氧樹脂分子中活性環氧基及活潑的次甲基上氫原子進行的。當然對高分子質量環氧樹脂而言,還有仲羥基,但其反應活性相對要低得多。
(1)與環氧基的反應_8 因環氧基有較大張力及極性,很易與親核試劑及親電試劑作用而開環,方便地引入親
水性基團及鏈段。例如選用氨基酸、氨基苯甲酸、氨基苯璜酸等小分子化合物與環氧樹脂反應,則氨基使環氧基開環得到相應含羧基、磺酸基的環氧樹脂,再經與氨水等鹼性化合行分散於水中,也可用此產物使純環氧
樹脂進行乳化。也有用羥基苯甲酸甲酯、巰基乙酸酯等小分子化合與環氧基反應,然後再進行酯基水解和中和而引入親水基團的。有人將丙烯酸齊聚物與環氧樹脂作用,藉羧基使環氧基開環而引入含多羧基基團的環氧樹脂再繼而用氨水中和成鹽,分散於水中形成穩定乳液。這類反應因使環氧基消失,一般需加入三聚氰胺或氮基樹脂等以利固化成膜。也有人選用端環氧基聚氧化乙烯或端環氧基聚氧化丙烯乳化劑及雙酚A與雙酚A環氧樹脂在三苯基膦化氫催化下反應.巧妙得到分別含親水性聚氧化乙烯及聚氧化丙烯鏈段並含有環氧基的改性環氧樹脂,不僅具有很好水分散性,且成膜後具有良好耐水性。也有以端羥基聚氧化乙烯或端羥基聚氧化丙烯代替上述雙環氧乳化劑與之反應的報道。
(2)與次甲基上氫的反應 」 有人將環氧樹脂溶於溶劑,加入引發劑及親水性單體如丙烯酸或甲基丙烯酸,加
熱使引發劑分解產生初級游離基,並進攻環氧樹脂次甲基使其活化而產生碳游離基成為新的活性中心,它引發單體進行聚合而使環氧樹脂成為含多羧基基團親水鏈的產物,用氨水中和得到了良好分散於水的穩定乳液。在游離基反應中一般對環氧基影響不大,但也有人將環氧基先用苯酚或苯甲酸或磷酸等予以保護,反應完後再予以還原。當然保護基的選擇應符合易於引入,形成的中間結構能經受所處後繼反應條件,並能在反應結束後不損及分子其他結構的條件下除去。
研究表明,這類接枝環氧樹脂中丙烯酸鏈段含量對乳液穩定性影響很大。
(3)與羥基的反應 對於分子質量較大的環氧樹脂中的仲羥基,雖然反應活性不及前者,但仍可以通過其反應而引入親水基團或鏈段。如有人使用磷酸與其反應形成單、雙或三磷酸酯環氧,用氨水中和成鹽而具親水性。也有酸酐與之反應形脂肪酸環氧,也有將不飽和脂肪酸與之反應形成不飽和脂肪酸環氧酯,再通過雙鍵作用與順丁烯二酸酐反應而製成水性脂肪酸環氧的報道。
1 3 改性固化劑乳化法[. ]
除上述方法外還可採用改性固化劑乳化法,它不需要先
將環氧樹脂改性和乳化,而在配製使用前與改性固化劑混合乳化,這種固化劑一般由多元胺固化劑進行加成擴鏈、接枝、成鹽而製得,非極性及具有表面活性的基團和鏈段的引入,不僅改善了與其環氧樹脂的相容性,而且對低分子質量液體樹脂有良好乳化作用,因而同時兼有乳化及交聯固化功能。
如將多乙烯多胺與單環氧或多環氧化物加成使大部分伯胺氫封閉,再用雙酚A環氧樹脂與之加成,達適當親水親油平衡值後與甲醛作用使伯胺氫羥甲基化。或將過量的多烯多胺與環氧樹脂加成後,用脂肪族或芳香族單環氧化合物封閉其伯胺氫,以水(或水溶性有機溶劑)稀釋後,以醋酸中和部分伯胺氫。封端的作用主要在於制約伯胺基上的氫的活性。
制備中控制好HLB值可保證其良好水分散性。
2 水性環氧樹脂的固化機理[18,1 9j 1 、 、
水性環氧樹脂乳液在配製時根據組成及成膜後性質的
不同要求,需調節環氧與固化劑 的摩爾比,當使用分子質量較大的固體環氧時,尚需加入乙二醇醚一類的成膜助劑。顏填料則可分別添加在環氧及固化劑內,最好質量相近。由於這是一種以溶有固化劑的水為連續相,環氧樹脂為分散相的多相體系,塗裝後水分在適當蒸汽壓條件下會逐漸揮發。有人認為隨水分大部分揮發,環氧顆粒相互接觸形成球體緊密堆積而聚結,而含固化劑的剩餘水分則填充於其間,繼而固化劑不斷擴散人環氧,二者相互作用而交聯固化成膜,殘余水分及其他添加助劑則擴散到膜表面揮發。但隨著交聯固化的進行,環氧顆粒內質量增大,黏度及玻璃化轉變溫度升高,會大大影響固化劑向內部擴散的速度,但速度過快並不利於成膜過程的進行,透射電鏡測試也顯示了其相應的兩相
結構,初步成膜後其固化反應實際上繼續進行,到完全固化需要持續一定時間。
由水的揮發,顆粒聚結,固化劑。擴散及交聯固化成膜的反應機制充分說明,水分的揮發及固化劑擴散速度是極重要的技術關鍵,環氧分散相的粒徑愈小,固化劑與環氧的相容性愈好,少量成膜助劑的使用及合適的水蒸發的控制手段都將直接影響成膜的過程及性質。陳聲銳指出 水分的蒸發分2個階段,先是流體狀態時其蒸發速率恆定,二是成膜後水分需從內部擴散到表面蒸發速率較慢,並指出固化成膜時的溫度、膜厚度及環境相對濕度皆制約著水分的蒸發。
3 有待改善的問題
以水性環氧樹脂為基礎的水性塗料具有環境污染小,對
許多基材包括潮濕基材都有良好附著力 可與水 泥砂漿或水性聚合物配合使用,操作方便,有很好的應用前景,但實踐中還是有不少問題需要予以改善。
(1)由於水的蒸汽壓及蒸發潛熱皆比有機溶劑高,作為
塗料塗裝後水的蒸發較慢,在低溫及潮濕環境下更甚,微量水分的殘留常造成塗膜表干時間延長,塗膜起泡或凹陷。
(2)由於水的冰點低,作為水性塗料,其凍融穩定性較溶
劑型為差。
(3)由於水的表面張力較大,作為水性塗料大大影響了
其對基材及添加的顏填料的潤濕及附著。
(4)由於水的電導率高及乳化劑存在,易使塗裝金屬受
到一定腐蝕。

❻ 環氧乙烷液體弄到手上怎麼處理

用點汽油或者柴油等烷烴類溶劑擦洗能除去的。

❼ 化學試驗中各種「無水溶劑」的處理方法

常用有機溶劑無水處理
1丙酮:沸點56.2℃,折光率1.358 8,相對密度0.789 9。
普通丙酮常含有少量的水及甲醇、乙醛等還原性雜質。其純化方法有: ⑴於250mL丙酮中加入2.5g高錳酸鉀迴流,若高錳酸鉀紫色很快消失,再加入少量高錳酸鉀繼續迴流,至紫色不褪為止。然後將丙酮蒸出,用無水碳酸鉀或無水硫酸鈣乾燥,過濾後蒸餾,收集55~56.5℃的餾分。用此法純化丙酮時,須注意丙酮中含還原性物質不能 太多,否則會過多消耗高錳酸鉀和丙酮,使處理時間增長。
⑵將100mL丙酮裝入分液漏斗中,先加入4mL10%硝酸銀溶液,再加入
3.6mL1mol/L氫氧化鈉溶液,振搖10min,分出丙酮層,再加入無水硫酸鉀或無水硫酸鈣進行乾燥。最後蒸餾 收集55~56.5℃餾分。此法比方法⑴要快,但硝酸銀較貴,只宜做小量純化用。
2、苯:沸點80.1℃,折光率1.501 1,相對密度0.87865。
普通苯常含有少量水和噻吩,噻吩和沸點84℃,與苯接近,不能用蒸餾的方法除去。
噻吩的檢驗:取1mL苯加入2mL溶有2mg吲哚醌的濃硫酸,振盪片刻,若酸層號藍綠色,即表示有噻吩存在。
噻吩和水的除去:將苯裝入分液漏斗中,加入相當於苯體積七分之一的濃硫酸,振搖使噻吩磺化,棄去酸液,再加入新的濃硫酸,重復操作幾次,直到酸層呈現無色或淡黃色並檢驗無噻吩為止。
將上述無噻吩的苯依次用10%碳酸鈉溶液和水洗至中性,再用氯化鈣乾燥,進行蒸餾,收集80℃的餾分,最後用金屬鈉脫去微量的水得無水苯。 氯仿
沸點61.7℃,折光率1.445 9,相對密度1.483 2。
氯仿在日光下易氧化成氯氣、氯化氫和光氣(劇毒),故氯仿應貯於棕色瓶中。市場上供應的氯仿多用1%酒精做穩定劑,以消除產生的光氣。氯仿中乙醇的檢驗可用碘仿反應;游離氯化氫的檢驗可用硝酸銀的醇溶液。
除去乙醇可將氯仿用其二分之一體積的水振搖數次分離下層的氯仿,用氯化
鈣乾燥24h,然後蒸餾。
另一種純化方法:將氯仿與少量濃硫酸一起振動兩三次。每200mL氯仿用10mL濃硫酸,分去酸層以後的氯仿用水洗滌,乾燥,然後蒸餾。
除去乙醇後的無水氯仿應保存在棕色瓶中並避光存放,以免光化作用產生光氣。 二氯甲烷
沸點40℃,折光率1.424 2,相對密度1.326 6。
使用二氯甲烷比氯仿安全,因此常常用它來代替氯仿作為比水重的萃取劑。普通的二氯甲烷一般都能直接做萃取劑用。如需純化,可用5%碳酸鈉溶液洗滌,再用水洗滌,然後用無水氯化鈣乾燥,蒸餾收集40~41℃的餾分,保存在棕色瓶中。
3、二氧六環:沸點101.5℃,熔點12℃,折光率1.442 4,相對密度1.033 6。
二氧六環能與水任意混合,常含有少量二乙醇縮醛與水,久貯的二氧六環可能含有過氧化物(鑒定和除去參閱乙醚)。二氧六環的純化方法,在500mL二氧六環中加入8mL濃鹽酸和50mL水的溶液,迴流6~10h,在迴流過程中,慢慢通入氮氣以除去生成的乙醛。冷卻後,加入固體氫氧化鉀,直到不能再溶解為止,分去水層,再用固體氫氧化鉀乾燥24h。
然後過濾,在金屬鈉存在下加熱迴流8~12h,最後在金屬鈉存在下蒸餾 ,壓入飢絲密封保存。精製過的1,4-二氧環己烷應當避免與空氣接觸。 二硫化碳
沸點46.25℃,折光率1.631 9,相對密度1.2632。
二硫化碳為有毒化合物,能使血液神經組織中毒。具有高度的揮發性和易燃性,因此,用時應避免與其蒸氣接觸。
對二硫化碳純度要求不高的實驗,在二硫化碳中加入少量無水氯化鈣乾燥幾小時,在水浴55℃~65℃下加熱蒸餾、收集。如需要制備較純的二硫化碳,在試劑級的二硫化碳中加入0.5%高錳酸鉀水溶液洗滌三次。除去硫化氫再用汞不斷振盪以除去硫。最後用2.5%硫酸汞溶液洗滌,除去所有的硫化氫(洗至沒有惡臭為止),再經氯化鈣乾燥,蒸餾收集 。 DMFN,N-二甲基甲醯胺 沸點149~156℃,折光率1.430 5,相對密度0.948 7。無色液體,與多數有機溶劑和水可任意混合,對有機和無機化合物的溶解性能較好。 N,N-二甲基甲醯胺含有少量水分。常壓蒸餾時有些分解,產生二甲胺和一氧化碳。在有酸或鹼存在時,分解加快。所以加入固體氫氧化鉀(鈉)在室溫放置數小時後,即有部分分解。因此,最常用硫酸鈣、硫酸鎂、氧化鋇、硅膠或分子篩乾燥,然後減壓蒸餾,收集76℃/4800Pa(36mmHg)的餾分。其中如含水較多時,可加入其1/10體積的苯,在常壓及80℃以下蒸去水和苯,然後再用無水硫酸鎂或氧化鋇乾燥,最後進行減壓蒸餾。純化後的N,N-二甲基甲醯胺要避光貯存。
N,N-二甲基甲醯胺中如有游離胺存在,可用2,4二硝基氟苯產生顏色來檢查。
DMSO(結構簡式:(CH3)2-S-O) 二甲基亞碸
沸點189℃,熔點18.5℃,折光率1.4783,相對密度1.100。二甲基亞碸能與水混合,可用分子篩長期放置加以乾燥。然後減壓蒸餾,收集
76℃/1600Pa(12mmHg)餾分。蒸餾時,溫度不可高於90℃,否則會發生歧化反應生成二甲碸和二甲硫醚。也可用氧化鈣、氫化鈣、氧化鋇或無水硫酸鋇來乾燥,然後減壓蒸餾。也可用部分結晶的方法純化。
二甲基亞碸與某些物質混合時可能發生爆炸,例如氫化鈉、高碘酸或高氯酸鎂等應予注意。 乙醇
沸點78.5℃,折光率1.361 6,相對密度0.789 3。
制備無水乙醇的方法很多,根據對無水乙醇質量的要求不同而選擇不同的方法。
若要求98%~99%的乙醇,可採用下列方法:
⑴利用苯、水和乙醇形成低共沸混合物的性質,將苯加入乙醇中,進行分餾,在64.9℃時蒸出苯、水、乙醇的三元恆沸混合物,多餘的苯在68.3與乙醇形成二元恆沸混合物被蒸出,最後蒸出乙醇。工業多採用此法。
⑵用生石灰脫水。於100mL95%乙醇中加入新鮮的塊狀生石灰20g,迴流3~5h,然後進行蒸餾。
若要99%以上的乙醇,可採用下列方法:
⑴在100mL99%乙醇中,加入7g金屬鈉,待反應完畢,再加入27.5g鄰苯二甲二乙酯或25g草酸二乙酯,迴流2~3h,然後進行蒸餾。
金屬鈉雖能與乙醇中的水作用,產生氫手和氫氧化鈉,但所生成的氫氧化鈉又與乙醇發生平衡反應,因此單獨使用金屬鈉不能完全除去乙醇中的水,須加入過量的高沸點酯,如鄰苯二甲酸二乙酯與生成的氫氧化鈉作用,抑制上述反應,從而達到進一步脫水的目的。
⑵在60mL99%乙醇中,加入5g鎂和0.5g碘,待鎂溶解生成醇鎂後,再加入900mL99%乙醇,迴流5h後,蒸餾,可得到99.9%乙醇。
由於乙醇具有非常強的吸濕性,所以在操作時,動作要迅速,盡量減少轉移次數以防止空氣中的水分進入,同時所用儀器必須事前乾燥好。 乙醚
沸點34.51℃,折光率1.352 6,相對密度0.713 78。普通乙醚常含有2%乙醇和0.5%水。久藏的乙醚常含有少量過氧化物
過氧化物的檢驗和除去:在干凈和試管中放入2~3滴濃硫酸,1mL2%碘化鉀溶液(若碘化鉀溶液已被空氣氧化,可用稀亞硫酸鈉溶液滴到黃色消失)和1~2滴澱粉溶液,混合均勻後加入乙醚,出現藍色即表示有過氧化物存在。除去過氧化物可用新配製的硫酸亞鐵稀溶液(配製方法是FeSO4?H2O60g,100mL水和6mL濃硫酸)。將100mL乙醚和10mL新配製的硫酸亞鐵溶液放在分液漏斗中洗數次,至無過氧化物為止。
醇和水的檢驗和除去:乙醚中放入少許高錳酸鉀粉末和一粒氫氧化鈉。放置後,氫氧化鈉表面附有棕色樹脂,即證明有醇存在。水的存在用無水硫酸銅檢驗。先用無水氯化鈣除去大部分水,再經金屬鈉乾燥。其方法是:將100mL乙醚放在乾燥錐形瓶中,加入20~ 25g無水氯化鈣,瓶口用軟木塞塞緊,放置一天以上,並間斷搖動,然後蒸餾,收集33~ 37℃的餾分。用壓鈉機將1g金屬鈉直接壓成鈉絲放於盛乙醚的瓶中,用帶有氯化鈣乾燥管的軟木塞塞住。或在木塞中插一末端拉成毛細管的玻璃管,這樣,既可防止潮氣浸入 ,又可使產生的氣體逸出。放置至無氣泡發生即可使用;放置後,若鈉絲表面已變黃變粗時,須再蒸一次,然後再壓入鈉絲。 乙酸乙酯
沸點77.06℃,折光率1.372 3,相對密度0.900 3。
乙酸乙酯一般含量為95%~98%, 含有少量水、乙醇和乙酸。可用下法純化:於1000mL乙酸
乙酯中加入100mL乙酸酐,10滴濃硫酸,加熱迴流4h,除去乙醇和水等雜質,然後進行蒸
餾。餾液用20~30g無水碳酸鉀振盪,再蒸餾。產物沸點為77℃,純度可達以99%。 甲醇
沸點64.96℃,折光率1.328 8,相對密度0.791 4。
普通未精製的甲醇含有0.02%丙酮和0.1%水。而工業甲醇中這些雜質的含量達0.5%~1%。
為了製得純度達99.9%以上的甲醇,可將甲醇用分餾柱分餾。收集64℃的餾分,再用鎂去水(與制備無水乙醇相同)。甲醇有毒,處理時應防止吸入其蒸氣。 石油醚
石油醚為輕質石油產品,是低相對分子質量烷烴類的混合物。其沸程為30~150℃,收集的溫度區間一般為30℃左右。有30~60℃,60~90℃,90~120℃等沸程規格的石油醚。其中含有少量不飽和烴,沸點與烷烴相近,用蒸餾法無法分離。
石油醚的精製通常將石油醚用其體積的濃硫酸洗滌2~3次,再用10%硫酸加入高錳酸鉀配成的飽和溶液洗滌,直至水層中的紫色不再消失為止。然後再用水洗,經無水氯化鈣乾燥後蒸餾。若需絕對乾燥的石油醚,可加入鈉絲(與純化無水乙醚相同)。 吡啶
沸點115.5℃,折光率1.509 5,相對密度0.981 9。
分析純的吡啶含有少量水分,可供一般實驗用。如要製得無水吡啶,可將吡啶與粒氫氧化鉀(鈉)一同迴流,然後隔絕潮氣蒸出備用。乾燥的吡啶吸水性很強,保存時應將容器口用石蠟封好。
二氧六環
沸點101.5℃,熔點12℃,折光率1.442 4,相對密度1.033 6。
二氧六環能與水任意混合,常含有少量二乙醇縮醛與水,久貯的二氧六環可能含有過氧化物(鑒定和除去參閱乙醚)。二氧六環的純化方法,在500mL二氧六環中加入8mL濃鹽酸和50mL水的溶液,迴流6~10h,在迴流過程中,慢慢通入氮氣以除去生成的乙醛。冷卻後,加入固體氫氧化鉀,直到不能再溶解為止,分去水層,再用固體氫氧化鉀乾燥24h。然後過濾,在金屬鈉存在下加熱迴流8~12h,最後在金屬鈉存在下蒸餾 ,壓入飢絲密封保存。精製過的1,4-二氧環己烷應當避免與空氣接觸。

❽ 溶劑安全常識

1.【在學習溶液知識的過程中,老師提出了下面兩個說法請同學們判斷:
均一、穩定的液體不一定是溶液,例如水是均一、穩定的液體,水不是溶液.溶液不一定是無色的,例如硫酸銅溶液是藍色的.(1)稀鹽酸、食鹽水均是溶液,屬於混合物;但是二者的溶質種類不同;(2)①20℃,向100克水中加入1g食鹽,達不到飽和,充分攪拌,則溶液質量為101g;②由於飽和溶液不能再溶解該種溶質,所以20°C向100g食鹽飽和溶液中,加入1g食鹽,不能再溶解,溶液質量仍然是100g.③20℃,向100克飽和食鹽水,只是對於食鹽飽和,加入0.1g氯化鉀可以溶解,充分攪拌,則溶液質量為100.1g.(3)①鹽酸是氯化氫氣體的水溶液,易於揮發,氣體的溶解度隨溫度的升高而降低,可以進行加熱處理②由於二氧化碳能溶於水,不能用A裝置收集二氧化碳;乙同學認為用A裝置能收集到CO2氣體,是從水的量和二氧化碳的溶解速度考慮的;植物油層可以防止二氧化碳溶於水.(4)由於鹽酸是氯化氫氣體的水溶液,用玻璃棒蘸取待測液,在酒精燈上加熱,蒸發後留有白色印跡的是氯化鈉溶液,沒有的是稀鹽酸故答案為:溶液是均一、穩定的混合物,例如水是均一、穩定的液體,水不是溶液;硫酸銅(1)①混合物;②溶質(2)①101②100③100.1(3)①進行加熱處理;②二氧化碳能溶於水;水的量較少,並且二氧化碳的溶解速度較慢;二氧化碳溶於水(4)可行,用玻璃棒蘸取待測液,在酒精燈上加熱,蒸發後留有白色印跡的是氯化鈉溶液,沒有的是稀鹽酸.。
2.溶劑使用應注意哪些安全事項
有機溶劑大都是易燃易爆物質,有的還有一定毒性,在使用時必須注意以下幾點。

① 溶劑的閃點和自燃點:有機溶劑閃點在298K (25℃)以下的就是易燃品,298 ~ 339K (25~ 66℃)之間叫做可燃品,339K (66℃ )以上的就是非易燃品。溶劑的閃點范圍內,禁止與明火、火花接觸。

閃點與自燃點溫差較大,若達到自燃溫度,溶劑自己就會燃燒,故要妥善保管,不能受熱和高溫烘烤。② 爆炸極限:易燃氣體與空氣混合後,若其蒸氣所佔體積比在一定范圍時,燃燒後立即爆炸。

使用溶劑時應使溶劑蒸氣在爆炸極限之外,以防萬一。③ 溶劑的毒性:使用溶劑很難避免從呼吸道或皮膚進入人體內部再到血液中去,引起程度不同的中毒。

施工場所應有良好的通風設備,空氣中有機溶劑的最高濃度不許超過規定數值,以保安全。④ 溶劑對皮膚的影響:溶劑可溶解或乳化皮膚上的脂肪,使皮膚粗糖、易裂、容易感染,應少接觸或有防護設施。
3.有關溶劑油的知識
分類:按化學結構分,溶劑油則可分為鏈烷烴,環烷烴和芳香烴三種。實際上除乙烷,甲苯和二甲苯等少數幾種純烴化合物溶劑油外,溶劑油都是各種結構烴類的混合物。從化學構成上,可以分為鏈烷烴、環烷烴和芳香烴等。通常所說的6#、120#、200#溶劑油,就是鏈烷烴。芳香烴指苯、甲苯、二甲苯等。

按沸程分,溶劑油可分為三類:低沸點溶劑油,如6#抽提溶劑油,沸程為60-90℃;中沸點溶劑油,如橡膠溶劑油,沸程為80-120℃;高沸點溶劑油,如油漆溶劑油,沸程為140-200℃,近年來廣泛使用的油墨溶劑油,其干點可高達300℃。一般情況下,60~90℃稱為抽提溶劑油,即人們常說的6#溶劑油;80~120℃稱為橡膠溶劑油,即人們常說的120#溶劑油;140~200℃稱為油漆溶劑油,即200#溶劑油。此外,還有油墨溶劑油、乾洗溶劑油等。有時,餾程的切割各個企業也會有所不同。例如,6#溶劑油,有的廠家的餾程范圍是60~75℃,通常我們稱之為窄6#溶劑油,以示區別。根據生產實際,120#溶劑油的餾程往往會控制在90~120℃之間。

按用途分,通常,可以分為主要用在抽出大豆油、萊籽油、花生油和骨油等動植物油脂的抽提溶劑油,用於橡膠、鞋膠、輪胎等領域的橡膠溶劑油,用於油漆、塗料工業的油漆溶劑油,等等。此外,還有洗滌溶劑油、油墨溶劑油等。根據國家標准GB1922-88,即按其98%餾出溫度或干點劃分溶劑油,常見的牌號有:70#香花溶劑油,90#石油醚,120#橡膠溶劑油,190#洗滌劑油,200#油漆溶劑油,260#特種煤油型溶劑。此外還有6#抽提溶劑油,航空洗滌汽油,310#彩色油墨溶劑油。農用滅蝗溶劑油等。實際上市場銷售的遠不止這些,生產廠家可以根據用戶需要,生產各種規格溶劑油。 制備方法:

溶劑油包括切取餾分和精製兩個過程。切取餾分過程通常有以下三種途徑:由常壓塔直接切取;將相應的輕質直餾餾分再切割成適當的窄餾分;和將催化重整抽余油進行分餾。各種溶劑油餾分一般都需要經過精製加工。以改善色澤,提高安定性,除去腐蝕性物質和降低毒性等。常用的精製方法有鹼洗,白土精製和加氫精製等。主要用途:溶劑油是五大類石油產品之一。溶劑油的用途十分廣泛。用量最大的首推塗料溶劑油(俗稱油漆溶劑油),其次有食用油,印刷油墨,皮革,農葯,殺蟲劑,橡膠,化妝品,香料,醫葯,電子部件等溶劑油。目前約有400-500種溶劑在市場上銷售,其中溶劑油(烴類溶劑,苯類化合物)佔一半左右。
4.生產中常用的有機溶劑有哪些
常見的炫類有機溶劑:正己烷、環己烷、環氧乙烷、苯、甲 苯、二甲苯、苯乙烯、汽油、柴油、松節油等。

常見的鹵代烴類有機溶劑:四氯化碳、二氯乙烷、氯乙烯、溴甲烷、氯仿、氯苯、三氯乙烯、氯甲烷、溴苯、二氯甲烷、三氯 乙烷、三氯甲烷等。常見的醇、二醇及其衍生物類有機溶劑:甲醇、正丙醇、乙 醇、甲醚、乙醚、苯酚、甲酚等。

常見的醛、酮類有機溶劑:甲醛、丙酮、丁酮等。常見的酸、酸酐、酯及丑胺類有機溶劑:甲酸、苯甲酸、乙 酸、醋酸酐、硝酸甲酯、乙酸乙酯、乙酸丁酯、丙烯醯胺等。

常見的含氮和含硫化合物類有機溶劑:丙烯腈、乳腈、乙 腈、丁二腈、1-硝基丙烷、硝基苯、甲胺、二甲胺、三甲胺、硝基 乙烷、苯胺、硝基苯、環己胺、硝基甲烷、氯化舍(三氯硝基甲 燒)、二硫化碳等。 屬於高毒物品的有機溶劑有:N-甲基苯胺、N-異丙基苯胺、I苯胺,丙烯腈,X禰基雜,對硝基氯苯/二硝基氯苯,二苯胺、二甲基苯胺、二硫化碳、甲苯-2,4-二異氰酸酯(TDI)、甲(基)肼、硫酸二甲酯、氯化萘、氯甲基醚、氯乙烯、偏二甲基肼、硝基苯。
5.施塗常用溶劑時的注意事項有哪些
苯苯的毒性較大,極易燃燒,與氧化劑接觸反應劇烈,易產生和積聚靜電。

醋酸乙酯醋酸乙酯易燃,與氧化劑接觸可引起燃燒。乙醇乙醇易燃,與氧化劑反應劇烈。

甲苯甲苯有毒,遇明火、高溫能燃燒,易產生和積聚靜電。三氯乙烯三氯乙烯對鋁、鎂合金有一定的腐蝕作用,毒性小,去污能力強。

醋酸丁酯醋酸丁酯毒性小,溶解力次於醋酸乙酯,揮發速度中等。正丁醇正丁醇味難聞,有一定毒性,與氧化劑接觸能引起燃燒。

乙醇單丁醚乙醇單丁醚揮發慢,可防止漆膜泛白、結皮。二氯乙烷二氯乙烷非易燃品,蒸氣對人體毒害大。

二甲苯二甲苯有毒,遇明火、高溫能燃燒,易產生和積聚靜電。丙酮丙酮易燃,揮發極快,手觸極冷,有毒。

環己酮環己酮遇明火、高溫、氧化劑有燃燒危險。松香水松香水遇明火、高溫、氧化劑有起火危險,遇硝酸會立即起火。
6.什麼是有機溶劑
有機溶劑是油墨連結料中的主要成分。

它使油墨具有一定的 流動性,當油墨轉移到紙張上後,揮發性大的溶劑迅速揮發,揮發 性小的溶劑靠毛細管作用滲入紙張內部,這樣就使得留在紙張表 面的樹脂連結料固著在紙張表面並乾燥。連結料中使用的溶劑品 種很多。

芳香烴類溶劑有苯、甲苯、二甲苯;醇類溶劑有乙醇、異丙 醇、叔丁醇;酯類如乙酸乙酯、乙酸丁酯;酮類溶劑有丙酮、丁酮。①有機溶劑揮發速度。

油墨揮發乾燥的速度首先取決於油墨中 溶劑的揮發速度。溶劑的揮發速度可以用每分鍾內每平方厘米面積 上溶劑揮發的毫克數來表示,即用mg/(cm2 • min)來表示,也可以用 1 ml溶劑在過濾紙上完全揮發所用時間(S)數值來表示。

②溶劑的溶解力(溶劑力)。常用溶解性參數和氫鍵指數的差 值來分析。

氫鍵指數即氫鍵強度指數,是用來描述氫鍵強度的。 當兩者的差值很小或兩值近似時,其溶解性良好,反之則差;差值 相當大時,則不溶解;介於兩者之間時,則發生部分溶解或溶脹。

這種分析方法,對正確使用稀釋劑以及分析油墨與承印面的黏附 牢度是很有用處的。 一般情況下,極性較強的體系(如氫鍵體系),若兩種物質的溶 解性參數相近且氫鍵屬同一等級強度時,可以相溶;非(或弱)極性 體系,只要兩種物質的溶解性差小於1。

5,即可相溶。

❾ 怎樣讓丙烯酸樹脂和異構烷烴溶劑相溶

晚上好,已經是生產出來的成品丙烯酸酯據我了解絕大多數都是難溶於純烷烴的比如D-80或者6#溶劑油,甚至有很多和異構芳香烴兼容性也差——丙烯酸酯本身由於結構上就具有極性基團使得它與烷烴幾乎不相容,如果可以前期做改性比如改性成脂肪族或者芳香族丙烯酸酯親油就能增加與正構和異構烷烴的親和力了請酌情參考。一般來說醇、醚、烷烴和胺都是丙烯酸樹脂的不良溶劑沒有辦法改善它們的溶解性能(加進去只會使已經溶解的丙烯酸樹脂黏度變高)。異構烷烴只與C5C9石油樹脂、萜烯、松香甘油酯、SBS和PS這些非極性樹脂良好互溶。

❿ 瀝青是如何製造出來的

瀝青是由石油提煉而來的。
生產方法
(1)蒸餾法:是將原油經常壓蒸餾分出汽油、煤油、柴油等輕質餾分,再經減壓蒸餾(殘壓10~100mmHg)分出減壓餾分油,餘下的殘渣符合道路瀝青規格時就可以直接生產出瀝青產品,所得瀝青也稱直餾瀝青,是生產道路瀝青的主要方法。

(2)溶劑沉澱法:非極性的低分子烷烴溶劑對減壓渣油中的各組分具有不同的溶解度,利用溶解度的差異可以實現組分分離,因而可以從減壓渣油中除去對瀝青性質不利的組分,生產出符合規格要求的瀝青產品,這就是溶劑沉澱法。

(3)氧化法:是在一定范圍的高溫下向減壓渣油或脫油瀝青吹入空氣,使其組成和性能發生變化,所得的產品稱為氧化瀝青。減壓渣油在高溫和吹空氣的作用下會產生汽化蒸發,同時會發生脫氫、氧化、聚合縮合等一系列反應。這是一個多組分相互影響的十分復雜的綜合反應過程,而不僅僅是發生氧化反應,但習慣上稱為氧化法和氧化瀝青,也有稱為空氣吹製法和空氣吹制瀝青。

(4)調合法:調合法生產瀝青最初指由同一原油構成瀝青的4組分按質量要求所需的比例重新調合,所得的產品稱為合成瀝青或重構瀝青。隨著工藝技術的發展,調合組分的來源得到擴大。例如可以從同一原油或不同原油的一、二次加工的殘渣或組分以及各種工業廢油等作為調合組分,這就降低了瀝青生產中對油源選擇的依賴性。隨著適宜製造瀝青的原油日益短缺,調合法顯示出的靈活性和經濟性正在日益受到重視和普遍應用。

(5)乳化法:瀝青和水的表面張力差別很大,在常溫或高溫下都不會互相混溶。但是當瀝青經高速離心、剪切、重擊等機械作用,使其成為粒徑0.1~5微米的微粒,並分散到含有表面活性劑(乳化劑——穩定劑)的水介質中,由於乳化劑能定向吸附在瀝青微粒表面,因而降低了水與瀝青的界面張力,使瀝青微粒能在水中形成穩定的分散體系,這就是水包油的乳狀液。這種分散體系呈茶褐色,瀝青為分散相,水為連續相,常溫下具有良好流動性。從某種意義上說乳化瀝青是用水來「稀釋」瀝青,因而改善了瀝青的流動性。

岩瀝青
岩瀝青是石油經過長達億萬年的沉積、變化,在熱、壓力、氧化、觸媒、細菌等的綜合作用下生成的瀝青類物質。常用為基質瀝青改性劑。岩瀝青的物理特性趨近於「煤」。
「超級」瀝青
與常見的瀝青不同,製造環氧瀝青是將環氧樹脂加入瀝青中,經過與固化劑發生反應,使瀝青具有很高的強度及韌性,且在高低溫下變形很小。這種材料看起來簡

閱讀全文

與環氧烷烴溶劑中除水的方法研究相關的資料

熱點內容
酸度檢測國標方法有 瀏覽:200
更新手機系統幾種方法 瀏覽:374
手指頭有點發黃怎麼治療方法 瀏覽:463
如何降薪最快的方法 瀏覽:257
九朵雲加馬油使用方法 瀏覽:160
常用的材料防腐與防護的方法 瀏覽:593
農村深山引水解決方法 瀏覽:5
合成鹽酸的檢測標准及方法 瀏覽:306
一般可以採用哪些方法 瀏覽:773
如何做公因數方法 瀏覽:997
存貨計量方法分析 瀏覽:972
四肢白斑的治療方法 瀏覽:53
槍與玫瑰的使用方法txt 瀏覽:610
簡單泡發海參的方法 瀏覽:283
佳能微單無線怎麼設置在哪裡設置方法 瀏覽:119
怎麼溝通好的方法 瀏覽:519
統計多次增長率用什麼方法 瀏覽:320
驗光鏡片箱使用方法 瀏覽:750
大蒜調和油食用方法 瀏覽:670
電腦風扇電源線連接方法 瀏覽:102