導航:首頁 > 研究方法 > 分析方法的統計量

分析方法的統計量

發布時間:2023-02-17 17:40:31

❶ 檢驗統計量怎麼

檢驗統計量核算公式如下:

標准化統計量=點估量-假設值/點估計量的抽樣標准差。(通常將標准化統計量簡稱為檢驗統計量)。

拒絕域:

能夠拒絕原假設的檢驗統計量的所有可能取值的集合,稱為拒絕域;不能夠拒絕原假設的檢驗統計量的所有可能取值的集合稱為接受域;根據給定的顯著性水平確定的拒絕域的邊界值,稱為臨界值。

❷ 統計分析方法哪些


統計分析方法有以下:
1、描述性統計分析方法。描述性統計分析方法是指運用製表和分類和圖形概括性數據來描述數據的集中趨勢、離散趨勢、偏度、峰度。
2、相關分析方法。相關分析方法是研究現象之間是否存在某種依存關系,對具體有依存關系的現象探討相關方向及相關程度。
3、方差分析方法。方差分析是用來分析一項實驗的影響因素與相應變數的關系,同時考慮多個影響因素之間的關系。
4、列聯表分析方法。列聯表分析是用於分析離散變數或定型變數之間是否存在相關。
5、主成分分析方法。主成分分析方法是將彼此梠關的一組指標變適轉化為彼此獨立的一組新的指標變數,並用其中較少的幾個新指標變數就能綜合反應原多個指標變數中所包含的主要信息。

❸ 常用的統計方法有哪些

統計方法有:
1、計量資料的統計方法
分析計量資料的統計分析方法可分為參數檢驗法和非參數檢驗法。
參數檢驗法主要為t檢驗和 方差分析(ANOVN,即F檢驗)等,兩組間均數比較時常用t檢驗和u檢驗,兩組以上均數比較時常用方差分析;非參數檢驗法主要包括秩和檢驗等。t檢驗可分為單組設計資料的t檢驗、配對設計資料的t檢驗和成組設計資料的t檢驗;當兩個小 樣本比較時要求兩 總體分布為 正態分布且方差齊性,若不能滿足以上要求,宜用t 檢驗或非參數方法( 秩和檢驗)。 方差分析可用於兩個以上 樣本均數的比較,應用該方法時,要求各個樣本是相互獨立的隨機樣本,各樣本來自正態總體且各處理組總體方差齊性。根據設計類型不同,方差分析中又包含了多種不同的方法。對於 定量資料,應根據所採用的設計類型、資料所具備的條件和分析目的,選用合適的統計分析方法,不應盲目套用t檢驗和 單因素方差分析。
2、計數資料的統計方法
計數資料的統計方法主要針對四格表和R×C表利用檢驗進行分析。
檢驗或u檢驗,若不能滿足 檢驗:當計數資料呈配對設計時,獲得的四格表為配對四格表,其用到的檢驗公式和校正公式可參考書籍。 R×C表可以分為雙向無序,單向有序、雙向有序屬性相同和雙向有序屬性不同四類,不同類的行列表根據其研究目的,其選擇的方法也不一樣。
3、等級資料的統計方法
等級資料(有序變數)是對性質和類別的等級進行分組,再清點每組觀察單位個數所得到的資料。在臨床醫學資料中,常遇到一些定性指標,如臨床療效的評價、疾病的臨床分期、病症嚴重程度的臨床分級等,對這些指標常採用分成若干個等級然後分類計數的辦法來解決它的量化問題,這樣的資料統計上稱為等級資料。
統計方法的選擇:
統計資料豐富且錯綜復雜,要想做到合理選用統計分析方法並非易事。對於同一 個資料,若選擇不同的統計分析方法處理,有時其結論是截然不同的。
正確選擇統計方法的依據是:
①根據研究的目的,明確研究試驗設計類型、研究因素與水平數;
②確定數據特徵(是否正態分布等)和樣本量大小;
③ 正確判斷統計資料所對應的類型(計量、計數和等級資料),同時應根據統計方法的適宜條件進行正確的統計量值計算;
最後,還要根據專業知識與資料的實際情況,結合統計學原則,靈活地選擇統計分析方法。

❹ 聚類分析中常用哪些統計量進行樣本間親疏關系的度量

常用的統計量有 距離和相似系數兩大類。
聚類分析,是一種將隨機現象歸類的統計學分析方法,在不知道應分為多少類合適的情況下,試圖藉助數理統計的方法用已收集到的資料找出研究對象的適當歸類方法。在生物醫學之中,聚類分析已成為發掘海量信息(包括基因信息)的首選工具。聚類分析數據探索性統計分析方法,按照分類的目的可以分為R型聚類和Q型聚類。R型聚類又稱為指標聚類,是指將m個指標歸類的方法,其目的是將指標降維從而選擇有代表性的指標,是針對變數進行的聚類分析。Q型聚類又稱樣品聚類,是指將n個樣品歸類的方法,其目的是找出樣品間的共性,是針對樣本的聚類分析。 測量n個樣本的m個變數,可以進行指標聚類(R型聚類)和樣品聚類(Q型聚類)。計算類間的相似系數是進行聚類分析的關鍵。

❺ 主元分析法的檢測統計量

檢測統計
從統計的角度講,要檢測數據中是否包含過程的故障信息,可以通過建立統計量進行假設檢驗,判斷過程數據是否背離了主元模型。通常的方法是主元子空間建立 Hotelling T2 統計量進行統計檢驗;在殘差子空間中建立 Q 統計量進行統計檢測。

什麼是統計量

統計量是統計理論中用來對數據進行分析、檢驗的變數。宏觀量是大量微觀量的統計平均值,具有統計平均的意義,對於單個微觀粒子,宏觀量是沒有意義的.相對於微觀量的統計平均性質的宏觀量也叫統計量。

需要指出的是,描寫宏觀世界的物理量例如速度、動能等實際上也可以說是宏觀量,但宏觀量並不都具有統計平均的性質,因而宏觀量並不都是統計量。

(6)分析方法的統計量擴展閱讀:

樣本的已知函數;其作用是把樣本中有關總體的信息匯集起來;是數理統計學中一個重要的基本概念。統計量依賴且只依賴於樣本x1,x2,…xn;它不含總體分布的任何未知參數。

從樣本推斷總體(見統計推斷)通常是通過統計量進行的。例如x1,x2,…,xn是從正態總體N(μ,1)(見正態分布)中抽出的簡單隨機樣本,其中均值(見數學期望)μ是未知的,為了對μ作出推斷,計算樣本均值。

可以證明,在一定意義下,塣包含樣本中有關μ的全部信息,因而能對μ作出良好的推斷。這里只依賴於樣本x1,x2,…,xn,是一個統計量。

還有一些統計量是因其與一定的統計方法的聯系而引進的。如假設檢驗中的似然比原則所導致的似然比統計量,K.皮爾森的擬合優度(見假設檢驗)准則所導致的Ⅹ統計量,線性統計模型中的最小二乘法所導致的一系列線性與二次型統計量,等等。

❼ 時域分析的統計量有哪些舉例說明

一種互聯網宏觀流量異常檢測方法(2007-11-7 10:37)

摘要:網路流量異常指網路中流量不規則地顯著變化。網路短暫擁塞、分布式拒絕服務攻擊、大范圍掃描等本地事件或者網路路由異常等全局事件都能夠引起網路的異常。網路異常的檢測和分析對於網路安全應急響應部門非常重要,但是宏觀流量異常檢測需要從大量高維的富含雜訊的數據中提取和解釋異常模式,因此變得很困難。文章提出一種分析網路異常的通用方法,該方法運用主成分分析手段將高維空間劃分為對應正常和異常網路行為的子空間,並將流量向量影射在正常子空間中,使用基於距離的度量來檢測宏觀網路流量異常事件。

公共互聯網正在社會生活的各個領域發揮著越來越重要的作用,與此同時,由互聯網的開放性和應用系統的復雜性所帶來的安全風險也隨之增多。2006年,國家計算機網路應急技術處理協調中心(CNCERT/CC)共接收26 476件非掃描類網路安全事件報告,與2005年相比增加2倍,超過2003—2005年3年的總和。2006年,CNCERT/CC利用部署的863-917網路安全監測平台,抽樣監測發現中國大陸地區約4.5萬個IP地址的主機被植入木馬,與2005年同期相比增加1倍;約有1千多萬個IP地址的主機被植入僵屍程序,被境外約1.6萬個主機進行控制。

黑客利用木馬、僵屍網路等技術操縱數萬甚至上百萬台被入侵的計算機,釋放惡意代碼、發送垃圾郵件,並實施分布式拒絕服務攻擊,這對包括骨幹網在內的整個互聯網網路帶來嚴重的威脅。由數萬台機器同時發起的分布式拒絕服務攻擊能夠在短時間內耗盡城域網甚至骨幹網的帶寬,從而造成局部的互聯網崩潰。由於政府、金融、證券、能源、海關等重要信息系統的諸多業務依賴互聯網開展,互聯網骨幹網路的崩潰不僅會帶來巨額的商業損失,還會嚴重威脅國家安全。據不完全統計,2001年7月19日爆發的紅色代碼蠕蟲病毒造成的損失估計超過20億美元;2001年9月18日爆發的Nimda蠕蟲病毒造成的經濟損失超過26億美元;2003年1月爆發的SQL Slammer蠕蟲病毒造成經濟損失超過12億美元。

針對目前互聯網宏觀網路安全需求,本文研究並提出一種宏觀網路流量異常檢測方法,能夠在骨幹網路層面對流量異常進行分析,在大規模安全事件爆發時進行快速有效的監測,從而為網路防禦贏得時間。

1 網路流量異常檢測研究現狀

在骨幹網路層面進行宏觀網路流量異常檢測時,巨大流量的實時處理和未知攻擊的檢測給傳統入侵檢測技術帶來了很大的挑戰。在流量異常檢測方面,國內外的學術機構和企業不斷探討並提出了多種檢測方法[1]。

經典的流量監測方法是基於閾值基線的檢測方法,這種方法通過對歷史數據的分析建立正常的參考基線范圍,一旦超出此范圍就判斷為異常,它的特點是簡單、計算復雜度小,適用於實時檢測,然而它作為一種實用的檢測手段時,需要結合網路流量的特點進行修正和改進。另一種常用的方法是基於統計的檢測,如一般似然比(GLR)檢測方法[2],它考慮兩個相鄰的時間窗口以及由這兩個窗口構成的合並窗口,每個窗口都用自回歸模型擬合,並計算各窗口序列殘差的聯合似然比,然後與某個預先設定的閾值T 進行比較,當超過閾值T 時,則窗口邊界被認定為異常點。這種檢測方法對於流量的突變檢測比較有效,但是由於它的閾值不是自動選取,並且當異常持續長度超過窗口長度時,該方法將出現部分失效。統計學模型在流量異常檢測中具有廣闊的研究前景,不同的統計學建模方式能夠產生不同的檢測方法。

最近有許多學者研究了基於變換域進行流量異常檢測的方法[3],基於變換域的方法通常將時域的流量信號變換到頻域或者小波域,然後依據變換後的空間特徵進行異常監測。P. Barford等人[4]將小波分析理論運用於流量異常檢測,並給出了基於其理論的4類異常結果,但該方法的計算過於復雜,不適於在高速骨幹網上進行實時檢測。

Lakhina等人[5-6]利用主成分分析方法(PCA),將源和目標之間的數據流高維結構空間進行PCA分解,歸結到3個主成分上,以3個新的復合變數來重構網路流的特徵,並以此發展出一套檢測方法。此外還有一些其他的監測方法[7],例如基於Markov模型的網路狀態轉換概率檢測方法,將每種類型的事件定義為系統狀態,通過過程轉換模型來描述所預測的正常的網路特徵,當到來的流量特徵與期望特徵產生偏差時進行報警。又如LERAD檢測[8],它是基於網路安全特徵的檢測,這種方法通過學習得到流量屬性之間的正常的關聯規則,然後建立正常的規則集,在實際檢測中對流量進行規則匹配,對違反規則的流量進行告警。這種方法能夠對發生異常的地址進行定位,並對異常的程度進行量化。但學習需要大量正常模式下的純凈數據,這在實際的網路中並不容易實現。

隨著宏觀網路異常流量檢測成為網路安全的技術熱點,一些廠商紛紛推出了電信級的異常流量檢測產品,如Arbor公司的Peakflow、GenieNRM公司的GenieNTG 2100、NetScout公司的nGenius等。國外一些研究機構在政府資助下,開始部署宏觀網路異常監測的項目,並取得了較好的成績,如美國研究機構CERT建立了SiLK和AirCERT項目,澳大利亞啟動了NMAC流量監測系統等項目。

針對宏觀網路異常流量監測的需要,CNCERT/CC部署運行863-917網路安全監測平台,採用分布式的架構,能夠通過多點對骨幹網路實現流量監測,通過分析協議、地址、埠、包長、流量、時序等信息,達到對中國互聯網宏觀運行狀態的監測。本文基於863-917網路安全監測平台獲取流量信息,構成監測矩陣,矩陣的行向量由源地址數量、目的地址數量、傳輸控制協議(TCP)位元組數、TCP報文數、數據報協議(UDP)位元組數、UDP報文數、其他流量位元組數、其他流量報文書、WEB流量位元組數、WEB流量報文數、TOP10個源IP占總位元組比例、TOP10個源IP占總報文數比例、TOP10個目的IP占總位元組數比例、TOP10個目的IP占總報文數比例14個部分組成,系統每5分鍾產生一個行向量,觀測窗口為6小時,從而形成了一個72×14的數量矩陣。由於在這14個觀測向量之間存在著一定的相關性,這使得利用較少的變數反映原來變數的信息成為可能。本項目採用了主成份分析法對觀測數據進行數據降維和特徵提取,下面對該演算法的工作原理進行介紹。

2 主成分分析技術

主成分分析是一種坐標變換的方法,將給定數據集的點映射到一個新軸上面,這些新軸稱為主成分。主成分在代數學上是p 個隨機變數X 1, X 2……X p 的一系列的線性組合,在幾何學中這些現線性組合代表選取一個新的坐標系,它是以X 1,X 2……X p 為坐標軸的原來坐標系旋轉得到。新坐標軸代表數據變異性最大的方向,並且提供對於協方差結果的一個較為簡單但更精練的刻畫。主成分只是依賴於X 1,X 2……X p 的協方差矩陣,它是通過一組變數的幾個線性組合來解釋這些變數的協方差結構,通常用於高維數據的解釋和數據的壓縮。通常p 個成分能夠完全地再現全系統的變異性,但是大部分的變異性常常能夠只用少量k 個主成分就能夠說明,在這種情況下,這k 個主成分中所包含的信息和那p 個原變數做包含的幾乎一樣多,於是可以使用k 個主成分來代替原來p 個初始的變數,並且由對p 個變數的n 次測量結果所組成的原始數據集合,能夠被壓縮成為對於k 個主成分的n 次測量結果進行分析。

運用主成分分析的方法常常能夠揭示出一些先前不曾預料的關系,因而能夠對於數據給出一些不同尋常的解釋。當使用零均值的數據進行處理時,每一個主成分指向了變化最大的方向。主軸以變化量的大小為序,一個主成分捕捉到在一個軸向上最大變化的方向,另一個主成分捕捉到在正交方向上的另一個變化。

設隨機向量X '=[X 1,X 1……X p ]有協方差矩陣∑,其特徵值λ1≥λ2……λp≥0。考慮線性組合:

Y1 =a 1 'X =a 11X 1+a 12X 2……a 1pX p

Y2 =a 2 'X =a 21X 1+a 22X 2……a 2pX p

……

Yp =a p'X =a p 1X 1+a p 2X 2……a p pX p

從而得到:

Var (Yi )=a i' ∑a i ,(i =1,2……p )

Cov (Yi ,Yk )=a i '∑a k ,(i ,k =1,2……p )

主成分就是那些不相關的Y 的線性組合,它們能夠使得方差盡可能大。第一主成分是有最大方差的線性組合,也即它能夠使得Var (Yi )=a i' ∑a i 最大化。我們只是關注有單位長度的系數向量,因此我們定義:

第1主成分=線性組合a 1'X,在

a1'a 1=1時,它能夠使得Var (a1 'X )最大;

第2主成分=線性組合a 2 'X,在

a2'a 2=1和Cov(a 1 'X,a 2 'X )=0時,它能夠使得Var (a 2 'X )最大;

第i 個主成分=線性組合a i'X,在

a1'a 1=1和Cov(a i'X,a k'X )=0(k<i )時,它能夠使得Var (a i'X )最大。

由此可知主成分都是不相關的,它們的方差等於協方差矩陣的特徵值。總方差中屬於第k個主成分(被第k個主成分所解釋)的比例為:

如果總方差相當大的部分歸屬於第1個、第2個或者前幾個成分,而p較大的時候,那麼前幾個主成分就能夠取代原來的p個變數來對於原有的數據矩陣進行解釋,而且信息損失不多。在本項目中,對於一個包含14個特徵的矩陣進行主成分分析可知,特徵的最大變化基本上能夠被2到3個主成分捕捉到,這種主成分變化曲線的陡降特性構成了劃分正常子空間和異常子空間的基礎。

3 異常檢測演算法

本項目的異常流量檢測過程分為3個階段:建模階段、檢測階段和評估階段。下面對每個階段的演算法進行詳細的介紹。

3.1 建模階段

本項目採用滑動時間窗口建模,將當前時刻前的72個樣本作為建模空間,這72個樣本的數據構成了一個數據矩陣X。在試驗中,矩陣的行向量由14個元素構成。

主成份分為正常主成分和異常主成份,它們分別代表了網路中的正常流量和異常流量,二者的區別主要體現在變化趨勢上。正常主成份隨時間的變化較為平緩,呈現出明顯的周期性;異常主成份隨時間的變化幅度較大,呈現出較強的突發性。根據采樣數據,判斷正常主成分的演算法是:

依據主成分和采樣數據計算出第一主成分變數,求第一主成分變數這72個數值的均值μ1和方差σ1,找出第一主成分變數中偏離均值最大的元素,判斷其偏離均值的程度是否超過了3σ1。如果第一主成分變數的最大偏離超過了閾值,取第一主成份為正常主成分,其他主成份均為異常主成分,取主成份轉換矩陣U =[L 1];如果最大偏離未超過閾值,轉入判斷第下一主成分,最後取得U =[L 1……L i -1]。第一主成份具有較強的周期性,隨後的主成份的周期性漸弱,突發性漸強,這也體現了網路中正常流量和異常流量的差別。

在得到主成份轉換矩陣U後,針對每一個采樣數據Sk =xk 1,xk 2……xk p ),將其主成份投影到p維空間進行重建,重建後的向量為:

Tk =UU T (Sk -X )T

計算該采樣數據重建前與重建後向量之間的歐氏距離,稱之為殘差:

dk =||Sk -Tk ||

根據采樣數據,我們分別計算72次采樣數據的殘差,然後求其均值μd 和標准差σd 。轉換矩陣U、殘差均值μd 、殘差標准差σd 是我們構造的網路流量模型,也是進行流量異常檢測的前提條件。

3.2 檢測階段

在通過建模得到網路流量模型後,對於新的觀測向量N,(n 1,n 2……np ),採用與建模階段類似的分析方法,將其中心化:

Nd =N -X

然後將中心化後的向量投影到p維空間重建,並計算殘差:

Td =UUTNdT

d =||Nd -Td ||

如果該觀測值正常,則重建前與重建後向量應該非常相似,計算出的殘差d 應該很小;如果觀測值代表的流量與建模時發生了明顯變化,則計算出的殘差值會較大。本項目利用如下演算法對殘差進行量化:

3.3 評估階段

評估階段的任務是根據當前觀測向量的量化值q (d ),判斷網路流量是否正常。根據經驗,如果|q (d )|<5,網路基本正常;如果5≤|q (d )|<10,網路輕度異常;如果10≤|q (d )|,網路重度異常。

4 實驗結果分析

利用863-917網路安全監測平台,對北京電信骨幹網流量進行持續監測,我們提取6小時的觀測數據,由於篇幅所限,我們給出圖1—4的時間序列曲線。由圖1—4可知單獨利用任何一個曲線都難以判定異常,而利用本演算法可以容易地標定異常發生的時間。本演算法計算結果如圖5所示,異常發生時間在圖5中標出。我們利用863-917平台的回溯功能對於異常發生時間進行進一步的分析,發現在標出的異常時刻,一個大規模的僵屍網路對網外的3個IP地址發起了大規模的拒絕服務攻擊。

5 結束語

本文提出一種基於主成分分析的方法來劃分子空間,分析和發現網路中的異常事件。本方法能夠准確快速地標定異常發生的時間點,從而幫助網路安全應急響應部門及時發現宏觀網路的流量異常狀況,為迅速解決網路異常贏得時間。試驗表明,我們採用的14個特徵構成的分析矩陣具有較好的識別准確率和分析效率,我們接下來將會繼續尋找更具有代表性的特徵來構成數據矩陣,並研究更好的特徵矩陣構造方法來進一步提高此方法的識別率,並將本方法推廣到短時分析中。

6 參考文獻

[1] XU K, ZHANG Z L, BHATTACHARYYA S. Profiling Internet backbone traffic: Behavior models and applications [C]// Proceedings of ACM SIGCOMM, Aug 22- 25, 2005, Philadelphia, PA, USA. New York, NY,USA:ACM,2005:169-180.

[2] HAWKINS D M, QQUI P, KANG C W. The change point model for statistical process control [J]. Journal of Quality Technology,2003, 35(4).

[3] THOTTAN M, JI C. Anomaly detection in IP networks [J]. IEEE Transactions on Signal Processing, 2003, 51 )8):2191-2204.

[4] BARFORD P, KLINE J, PLONKA D, et al. A signal analysis of network traffic anomalies [C]//Proceedings of ACM SIGCOMM Intemet Measurement Workshop (IMW 2002), Nov 6-8, 2002, Marseilles, France. New York, NY,USA:ACM, 2002:71-82.

[5] LAKHINA A, CROVELLA M, DIOT C. Mining anomalies using traffic feature distributions [C]// Proceedings of SIGCOMM, Aug 22-25, 2005, Philadelphia, PA, USA. New York, NY,USA: ACM, 2005: 217-228.

[6] LAKHINA A, CROVELLA M, DIOT C. Diagnosing network-wide traffic anomalies [C]// Proceedings of ACM SIGCOMM, Aug 30 - Sep 3, 2004, Portland, OR, USA. New York, NY,USA: ACM, 2004: 219-230.

[7] SCHWELLER R, GUPTA A, PARSONS E, et al. Reversible sketches for efficient and accurate change detection over network data streams [C]//Proceedings of ACM SIGCOMM Internet Measurement Conference (IMC』04), Oct 25-27, 2004, Taormina, Sicily, Italy. New York, NY,USA: ACM, 2004:207-212.

[8] MAHONEY M V, CHAN P K. Learning rules for anomaly detection of hostile network traffic [C]// Proceedings of International Conference on Data Mining (ICDM』03), Nov 19-22, Melbourne, FL, USA . Los Alamitos, CA, USA: IEEE Computer Society, 2003:601-604.

❽ 統計分析方法有哪幾種 常用的統計方法有哪些

1、系統聚類分析:是一門多元統計分類法,根據多種地學要素對地理實體進行劃分類別的方法。對不同的要素劃分類別往往反映不同目標的等級序列,如土地分等定級、水土流失強度分級等。

2、回歸分析:在統計學中,回歸分析(regression analysis)指的是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析按照涉及的變數的多少,分為一元回歸和多元回歸分析;按照因變數的多少,可分為簡單回歸分析和多重回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。

3、主成分分析:主成分分析(Principal Component Analysis,PCA), 是一種統計方法。通過正交變換將一組可能存在相關性的變數轉換為一組線性不相關的變數,轉換後的這組變數叫主成分。

❾ 常用統計分析方法有哪些

1、對比分析法

對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。

橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。

縱向對比指的是同一事物在時間維度上的變化,例如,環比、同比和定基比,也就是本月銷售額與上月銷售額的對比,本年度1月份銷售額與上一年度1月份銷售額的對比,本年度每月銷售額分別與上一年度平均銷售額的對比等。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。

2、分組分析法

分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。

根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。

3、預測分析法

預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。

4、漏斗分析法

漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡。

最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。

5、AB測試分析法

AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。

例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。

除此之外,要想做好數據分析,讀者還需掌握一定的數學基礎,例如,基本統計量的概念(均值、方差、眾數、中位數等),分散性和變異性的度量指標(極差、四分位數、四分位距、百分位數等),數據分布(幾何分布、二項分布等),以及概率論基礎、統計抽樣、置信區間和假設檢驗等內容,通過相關指標和概念的應用,讓數據分析結果更具專業性。

❿ 統計量有哪些內容

統計量的內容有包括U統計量,秩統計量,抽樣分布。平均數、中位數、眾數。

統計量是統計理論中用來對數據進行分析、檢驗的變數。宏觀量是大量微觀量的統計平均值,具有統計平均的意義,對於單個微觀粒子,宏觀量是沒有意義的。

相對於微觀量的統計平均性質的宏觀量也叫統計量.需要指出的是,描寫宏觀世界的物理量例如速度、動能等實際上也可以說是宏觀量,但宏觀量並不都具有統計平均的性質,因而宏觀量並不都是統計量。

統計分類

充分性是數理統計的一個重要基本概念,它是R.A.費希爾在1925年引進的,費希爾提出,並由J.奈曼和P.R.哈爾莫斯在1949年嚴格證明了一個判定統計量充分性的方法,叫因子分解定理。這個定理適用面廣且應用方便,利用它可以驗證很多常見統計量的充分性。

例如,若正態總體有已知方差,則樣本均值塣是充分統計量。若正態總體的均值、方差都未知,則樣本均值和樣本方差S合起來構成充分統計量。一個統計量是否充分,與總體分布有密切關系。將樣本加工成統計量要求越簡單越好。

簡單的程度的大小,主要用統計量的維數來衡量。簡單地講,若統計量T2是由統計量T1加工而來(即T2是T1的函數),則T2比T1簡單。在此意義上,最簡單的充分統計量叫極小充分統計量。這是E.L.萊曼和H.謝菲於1950年提出的。



閱讀全文

與分析方法的統計量相關的資料

熱點內容
電腦蝸牛快速緩解方法 瀏覽:890
山楂干功效與作用及食用方法 瀏覽:747
如何用簡單的方法掌握值域 瀏覽:27
做信息如何給企業賦能提供方法 瀏覽:907
excel公式的使用方法 瀏覽:989
普洱茶餅正確沖泡方法 瀏覽:960
糖類和苷類的常用鑒別方法 瀏覽:828
湖北小規模殘保金計算方法 瀏覽:334
plc無線連接方法 瀏覽:536
電影作者研究的方法有 瀏覽:973
期貨技術分析方法是一面鏡子 瀏覽:266
生產食用植物油的方法 瀏覽:216
怎麼防止蟑螂的最好方法 瀏覽:708
動態聚類分析方法 瀏覽:823
快板怎麼拿的方法對 瀏覽:987
藏芽法嫁接方法視頻 瀏覽:753
倉鼠在家鍛煉方法 瀏覽:881
如何預防感冒的方法稿件 瀏覽:839
冰犀牛角鑒別方法 瀏覽:713
厚度的檢測方法和評定方法 瀏覽:572