【導讀】在我們的日常工作生活中,經常會用到數據分析,比如領導需要舉辦一場活動,讓你做個活動策劃,你就要對客流量,成本,展現等各方面進行數據分析,做數據分析就好比做一件衣服,首先的先有設計圖,然後在根據設計圖分步驟的去製作成成品。下面我們就來說說數據分析的基本思路是什麼?怎麼才有數據分析思路?
數據分析方法論主要有PEST分析法,5W2H分析法,邏輯樹分析法,4P營銷理論(現在用的比較多是4C),用戶行為理論。下面呢,我就以5W2h分析方法,給大家詳細的說明一下怎麼建立完整的數據分析思路。
首先,先介紹一下什麼是5W2H。
(1)WHAT——是什麼?目的是什麼?做什麼工作?
(2)WHY——為什麼要做?可不可以不做?有沒有替代方案?
(3)WHO——誰?由誰來做?
(4)WHEN——何時?什麼時間做?什麼時機最適宜?
(5)WHERE——何處?在哪裡做?
(6)HOW ——怎麼做?如何提高效率?如何實施?方法是什麼?
(7)HOW MUCH——多少?做到什麼程度?數量如何?質量水平如何?費用產出如何?
例如要不要增加一個推廣渠道,我們來形成一個完整的分析思路。
WHAT:一個引流的渠道,對這個渠道要有一定認識。
WHY :目前其他的渠道的流量不能滿足,做了渠道之後可能會增加多少流量。
WHO:是直接讓其他渠道的人來負責,還是重新招一個操作過這個渠道的人。
WHEN:如果要做這個渠道,有沒有時間來做,什麼時候開始實施。
WHERE:如果是大公司,要考慮是總公司來做,還是分公司來做。
HOW:怎麼做,是否有詳細的解決方案,是否先參考同行競爭對手。
HOW MUCH:新增加的這個渠道,需要投入多少成本,人力成本,廣告成本等等。
對每個環節進行分析,評估,然後綜合每個環節,看看這個渠道是否值得開發。
以上就是小編為大家整理發布的關於「數據分析的基本思路是什麼?怎麼才有數據分析思路?」,希望對大家有所幫助。做熟悉分析最重要的就是有完整的思路,有了完整的思路才可以更清晰准確的去進行數據分析。更多相關內容,關注小編,持續更新。
『貳』 數據分析有什麼思路
1、明確思路
明確數據分析的目的以及思路是確保數據分析過程有效進行的首要條件。它作用的是可以為數據的收集、處理及分析提供清晰的指引方向。可以說思路是整個分析流程的起點。首先目的不明確則會導致方向性的錯誤。當明確目的後,就要建分析框架,把分析目的分解成若干個不同的分析要點,即如何具體開展數據分析,需要從哪幾個角度進行分析,採用哪些分析指標。
2、收集數據
收集數據是按照確定的數據分析框架收集相關數據的過程,它為數據分析提供了素材和依據。這里所說的數據包括第一手數據與第二手數據,第一手數據主要指可直接獲取的數據比如公司自己的業務資料庫中的業務數據,第二手數據主要指經過加工整理後得到的數據例如一些公開出版物或者第三方的數據網站。
3、處理數據
處理數據是指對收集到的數據進行加工整理,形成適合數據分析的樣式,它是數據分析前必不可少的階段。數據處理的基本目的是從大量的、雜亂無章、難以理解的數據中,抽取並推導出對解決問題有價值、有意義的數據。數據處理主要包括數據清洗、數據轉化、數據提取、數據計算等處理方法。
4、分析數據
分析數據是指用適當的分析方法及工具,對處理過的數據進行分析,提取有價值的信息,形成有效結論的過程。由於數據分析多是通過軟體來完成的,這就要求數據分析師不僅要掌握各種數據分析方法,還要熟悉數據分析軟體的操作。
5、可視化
一般情況下,數據是通過表格和圖形的方式來呈現的,我們常說用圖表說話就是這個意思。常用的數據圖表包括餅圖、柱形圖、條形圖、折線圖、散點圖、雷達圖等,當然可以對這些圖表進一步整理加工,使之變為我們所需要的圖形,例如金字塔圖、矩陣圖、漏斗圖等。
6、撰寫報告
撰寫數據分析報告其實是對整個數據分析過程的一個總結與呈現,通過清晰的結構和圖文並茂的展現方式去展具有建設意義的解決方案。
『叄』 怎樣進行數據分析
進行數據分析方式如下:
1、要求明確:准確
明確需求主要是與他人溝通與需求相關的一切內容,並清晰准確地理解和表達相關內容。
在需求溝通中,通過掌握需求的核心內容,可以減少反復溝通。需求的核心內容可以從分析目的、分析主體、分析口徑、分析思路、完成時間五個方面來確定。此外,在溝通的過程中,可以適當提出自己的想法,讓需求更加清晰立體。
2、確定思路:全面、深入
分析思想是分析的靈魂,是細化分析工作的過程。分析思路清晰有邏輯,能有效避免反復分析問題。從分析目的出發,全面、深入地拆解分析維度,確定分析方法,最終形成完整的分析框架。
3、處理數據:高效
當我們進行數據分析時,我們可能會得到混亂的數據,這就要求我們清潔、整理、快速、准確地加工成適合數據分析的風格。
此時需要使用數據分析軟體以工作流的形式提取數據模型的語義,通過易於操作的可視化工具將數據加工成具有語義一致性和完整性的數據模型。系統支持的數據預處理方法包括:采樣、拆分、過濾和映射、列選擇、空值處理、並行、合並行、元數據編輯、JOIN、行選擇、重復值去除等。
4、數據分析:合適的數據
分析數據在分析過程中的地位是首要任務。從分析的目的出發,運用適當的分析方法或模型,使用分析工具分析處理過的數據,提取有價值的信息。
5、顯示數據:直觀
展示數據又稱數據可視化,是以簡單直觀的方式傳達數據中包含的信息,增強數據的可讀性,讓讀者輕松看到數據表達的內容。
6、寫報告:建議落地,邏輯清晰
撰寫報告是指以文件的形式輸出分析結果,其內容是通過全面科學的數據分析來顯示操作,可以為決策者提供強有力的決策依據,從而降低操作風險,提高利潤。
在撰寫報告時,為了使報告更容易閱讀和有價值,需要注意在報告中註明分析目標、口徑和數據來源;報告應圖文並茂,組織清晰,邏輯性強,單一推理;報告應反映有價值的結論和建議。
7、效果反饋:及時
所謂效果反饋,就是選擇合適有代表性的指標,及時監控報告中提出的戰略執行進度和執行效果。只有輸入和輸出才能知道自己的操作問題點和閃點,所以效果反饋是非常必要的。反饋時要特別注意兩點,一是指標要合適,二是反饋要及時。
『肆』 數據分析的8個流程與7個常用思路
數據分析的8個流程與7個常用思路
在產品運營過程中,數據分析具有極其重要的戰略意義,是產品優化和產品決策的核心大腦。因此做好數據分析,是產品運營中最重要的環節之一。
那麼如何做好支付的數據分析呢?以下梳理出數據分析的8步流程,以及常見的7種分析思路。新手在啟動數據分析前,最好跟主管或數據經驗較豐富的童鞋確認每一步的分析流程。
一、數據分析八流程:
為什麼分析?
首先,你得知道為什麼分析?弄清楚此次數據分析的目的。比如,這次簡訊方式的數據分析,為什麼要做這個分析。你所有的分析都的圍繞這個為什麼來回答。避免不符合目標反復返工,這個過程會很痛苦。
分析目標是誰?
分析目標是誰? 要牢記清楚的分析因子,統計維度是訂單,還是用戶,還是金額,還是用戶行為。避免把訂單當用戶算,把用戶當訂單算(上周運營同學真實案例),算出的結果是差別非常大的。
想達到什麼效果?
通過分析各個維度的用戶,訂單,找到真正的問題。例如這次的XX通道的分析,全盤下線,或維持現狀不動,都不符合利益最大化原則。通過分析,找到真正的問題根源,發現用戶精細化運營已經非常必要了。
需要哪些數據?
支付的數據,茫茫大海,數據繁多,用「海」來形容一點都不為過。需要哪些源數據?付費總額,付費人數?新老用戶維度?付費次數?轉移人數?留存率?用戶特徵?畫像?先整理好思路,列一個表。避免數據部門同學今天跑一個數據,明天又跑一個數據,數據部門同學也會比較煩。
如何採集?
直接資料庫調取?或者交給程序猿導出? 自己寫SQL?運營同學不妨都學一下SQL,自力更生。
如何整理?
整理數據是門技術活。不得不承認EXCEL是個強大工具,數據透視表的熟練使用和技巧,作為支付數據分析必不可少,各種函數和公式也需要略懂一二,避免低效率的數據整理。Spss也是一個非常優秀的數據處理工具,特別在數據量比較大,而且當欄位由特殊字元的時候,比較好用。
如何分析?
整理完畢,如何對數據進行綜合分析,相關分析?這個是很考驗邏輯思維和推理能力的。同時分析推理過程中,需要對產品了如指掌,對用戶很了解,對渠道很熟悉。看似一個簡單的數據分析,其實是各方面能力的體現。首先是技術層面,對數據來源的抽取-轉換-載入原理的理解和認識;其實是全局觀,對季節性、公司等層面的業務有清晰的了解;最後是專業度,對業務的流程、設計等了如指掌。練就數據分析的洪荒之力並非一朝一夕之功,而是在實踐中不斷成長和升華。一個好的數據分析應該以價值為導向,放眼全局、立足業務,用數據來驅動增長。運營同學比較容易聚在某個點上轉圈走不出來。
如何展現和輸出?
數據可視化也是一個學問。如何用合適的圖表表現?每一種圖表的寓意是什麼?下面列舉下常用的8個圖表:
(1)、折線圖:合適用於隨時間而變化的連續數據,例如隨時間收入變化,及增長率變化。
(2)、柱型圖:主要用來表示各組數據之間的差別。主要有二維柱形圖、三維柱形圖、圓柱圖、圓錐圖和棱錐圖。如支付寶與微信覆蓋率差別。
(3)、堆積柱形圖:堆積柱形圖不僅可以顯示同類別中每種數據的大小,還可以顯示總量的大小。例如我們需要表示各個支付方式的人數及總人數時。
(4)、線-柱圖:這種類型的圖不僅可以顯示出同類別的比較,還可以顯示出趨勢情況。
(5)、條形圖:類似於橫向的柱狀圖,和柱狀圖的展示效果相同,主要用於各項類的比較。
(6)、餅圖:主要顯示各項佔比情況。餅圖一般慎用,除非佔比區別非常明顯。因為肉眼對對餅圖的佔比比例分辨並不直觀。而且餅圖的項,一般不要超過6項。6項後建議用柱形圖更為直觀。
(7)、復合餅圖:一般是對某項比例的下一步分析。
(8)、母子餅圖:可直觀地分析項目的組成結構與比重。例如上次簡訊支付能力用戶中,沒有第3方支付能力的用戶,中間有X%比例是沒銀行卡,X%比例是沒微信支付賬號等。
圖表不必太花哨,一個表說一個問題就好。用友好的可視化圖表,節省閱讀者的時間,也是對閱讀者的尊重。
有一些數據,辛辛苦苦做了整理和分析,最後發現對結論輸出是沒有關系的,雖然做了很多工作,但不能為了體現工作量而堆砌數據。
在展現的過程中,請註明數據的來源,時間,指標的說明,公式的演算法,不僅體現數據分析的專業度,更是對報告閱讀者的尊重。
二、數據分析七思路:
簡單趨勢
通過實時訪問趨勢了解產品使用情況。如總流水,總用戶,總成功率,總轉化率。
多維分解
根據分析需要,從多維度對指標進行分解。例如新老用戶、支付方式、游戲維度、產品版本維度、推廣渠道、來源、地區、設備品牌等等維度。
轉化漏斗
按照已知的轉化路徑,藉助漏斗模型分析總體和每一步的轉化情況。常見的轉化情境有下單率,成功轉化率等。
用戶分群
在精細化分析中,常常需要對有某個特定行為的用戶群組進行分析和比對;數據分析需要將多維度和多指標作為分群條件,有針對性地優化產品,提升用戶體驗。例如我們這次對簡訊這類用戶,簡訊里又有第3方和無第3方支付能力的,需要再進行分群的運營。
細查路徑
數據分析可以觀察用戶的行為軌跡,探索用戶與產品的交互過程;進而從中發現問題、激發靈感亦或驗證假設。例如我們這次對新用戶的運營,也非常有意思。
留存分析
留存分析是探索用戶行為與回訪之間的關聯。一般我們講的留存率,是指「新增用戶」在一段時間內「回訪」的比例。通過分析不同用戶群組的留存差異、使用過不同功能用戶的留存差異來找到產品的增長點。
A/B 測試
A/B測試就是同時進行多個方案並行測試,但是每個方案僅有一個變數不同;然後以某種規則(例如用戶體驗、數據指標等)優勝略汰選擇最優的方案。數據分析需要在這個過程中選擇合理的分組樣本、監測數據指標、事後數據分析和不同方案評估。
不單是支付的數據分析,其他的產品運營數據分析流程和思路也一樣適用,只是支付數據相對其他產品而言,維度很多,以及組合的維度也非常多,因此就需要更清晰的思路和大局觀,避免陷入到數據海洋中。
『伍』 數據分析怎麼做
一、 具備基本的數據素養
1. 具備基本的統計學概念
先來說一下最基礎的概念:平均值,中位數,百分位數,眾數,離散程度,方差,標准差。這里不一一贅述,只簡單說一下均值和中位數的差異。 均值:即平均數,優勢是,均值跟所有數據都相關,劣勢是容易受到極端值影響。
比如,你和你的3個好友,跟比爾蓋茨組成一個團隊,然後這個團隊的人均身價是200億美金,你會覺得自己是有錢人嗎? 中位數:只跟排在中間的數據相關,優點是不受極端值影響,缺點是缺乏敏感性。
2. 避免數據邏輯錯誤常見數據邏輯謬誤1:相關當因果
「有研究結果表明:顏值高的人收入也更高。」 聽到這個結論,你會不會覺得應該去整容? 但有可能是因為,顏值高的人相對比較自信,而自信的人容易在職場上獲得成功,所以收入高。也有可能,是收入高的人有能力裝扮自己,所以看起來顏值更高。所以說,上面這個表達,只是在說顏值和收入相關,但沒有說兩者是因果關系。
二、數據溝通和表達:如何用數據講故事
如果你能夠具備足夠的數據素養,知道如何呈現數據,同時能夠把數據表達出來,那麼就能在故事當中融入足夠有說服力的數據,故事自然變得很有說服力。
1. 理解溝通目的和對象
如果你說服一個客戶購買你的理財產品,你會怎麼跟他說?
第一種:這個理財產品有10%的概率會虧;
第二種:這個理財產品有90%的概率能賺。
當然是後者,他聽完大概率願意買,但如果是前一種說法,他可能會很恐懼。 所以,當你在公司裡面跟不同的對象溝通時,也應該呈現不一樣的數據。
比如,高層可能關心公司整體營收、盈利等等相關數據,中層可能關心他們部門的KPI數據,而主管更關注某個活動、某個舉措的成功失敗情況。
2. 選擇合適的數據表達類型
怎麼樣用更加合適的數據圖表類型?這里有些經驗干貨分享給大家,常用表格適用范圍如下:
o 散點圖(適合相關)
o 折線圖(適合趨勢)
o 橫的和豎的條形圖(適合對比)
o 瀑布圖(適合演變)
o 熱力圖(適合聚焦)
o 雷達圖(適合多指標)
o 詞雲圖(適合看分布)等等
3. 符合數據可視化原則
數據的可視化也非常重要,因為如果沒有可視化,就是一些數字羅列,那就跟文字信息沒什麼差異了。
數據可視化的幾個原則:閱讀門檻別太高,不要過多顏色,突出關鍵信息,文本與數據呼應。
『陸』 怎樣對數據進行分析—數據分析的六大步驟
時下的大數據時代與人工智慧熱潮,相信很多人都會對數據分析產生很多的興趣,其實數據分析師是Datician的一種,指的是不同行業中,專門從事行業數據收集,整理,分析,並依據數據做出行業研究、評估和預測的專業人員。
很多人學習過數據分析的知識,但是當真正接觸到項目的時候卻不知道怎樣去分析了,導致這樣的原因主要是沒有屬於自己的分析框架,沒有一個合理的分析步驟。那麼數據分析的步驟是什麼呢?比較讓大眾認可的數據分析步驟分為
六大步驟。只有我們有合理的分析框架時,面對一個數據分析的項目就不會無從下手了。
無論做什麼事情,首先我們做的時明確目的,數據分析也不例外。在我們進行一個數據分析的項目時,首先我們要思考一下為什麼要進展這個項目,進行數據分析要解決什麼問題,只有明確數據分析的目的,才不會走錯方向,否則得到的數據就沒有什麼指導意義。
明確好數據分析目的,梳理分析思路,並搭建分析框架,把分析目的分解成若干不同的分析要點,即如何具體開展數據分析,需要從那幾個角度進行分析,採用哪些分析指標(各類分析指標需合理搭配使用)。同時,確保分析框架的體系化和邏輯化,確定分析對象、分析方法、分析周期及預算,保證數據分析的結果符合此次分析的目的。
數據收集的按照確定的數據分析框架,收集相關數據的過程,它為數據分析提供了素材和依據。常見的數據收集方式主要有以下幾種
一般地我們收集過來的數據都是雜亂無章的,沒有什麼規律可言的,所以就需要對採集到的數據進行加工處理,形成合適的數據樣式,保證數據的一致性和有效性。一般在工作中數據處理會佔用我們大部分的時間
數據處理的基本目的是從大量的,雜亂無章的數據中抽取到對接下來數據分析有用的數據形式。常見的數據處理方式有 數據清洗、數據分組、數據檢索、數據抽取 等,使用的工具有 Excel、SQL、Python、R 語言等。
對數據整理完畢之後,就需要對數據進行綜合的分析。數據分析方式主要是使用適當的分析方法和工具,對收集來的數據進行分析,提取有價值的信息,形成有效結論的過程。
在確定數據分析思路的階段,就需要對公司業務、產品和分析工具、模型等都有一定的了解,這樣才能更好地駕馭數據,從容地進行分析和研究,常見的分析工具有 SPSS、SAS、Python、R語言 等,分析模型有 回歸、分類、聚類、關聯、預測 等。其實數據分析的重點不是採用什麼分析工具和模型而是找到合適的分析工具和模型,從中發現數據中含有的規律。
通過對數據的收集、整理、分析之後,隱藏的數據內部的關系和規律就會逐漸浮現出來,那麼通過什麼方式展現出這些關系和規律,才能讓別人一目瞭然。一般情況下,是通過表格和圖形的方式來呈現出來。多數情況下,人們通常願意接受圖形這樣數據展現方式,因為它能更加有效、直觀地傳遞出數據所要表達的觀點。
常用數據圖表 有餅圖、柱形圖、條形圖、折線圖、氣泡圖、散點圖、雷達圖、矩陣圖 等圖形,在使用圖形展現的情況下需要注意一下幾點:
當分析出來最終的結果之後,我們是知道這部分數據展現出來的意義,適用的場景。但是如果想讓更多人了解你分析出來的東西,讓你的分析成果為眾人所熟知,這時就需要一份完美的PPT報告,一個邏輯合理的故事。這樣的分析結果才是最完美的。
一份好的數據分析報告,首先需要有一個好的分析框架,並且圖文並茂,層次清晰,能夠讓閱讀者一目瞭然。結構清晰、主次分明可以使閱讀者正確理解報告內容;圖文並茂,可以令數據更加生動活潑,提高視覺沖擊力,有助於閱讀者更形象,直觀地看清楚問題和結論,從而產生思考。
數據分析的四大誤區
1、分析目的不明確,不能為了分析而分析 。只有明確目的才能更好的分析
2、缺乏對行業、公司業務的認知,分析結果偏離實際 。數據必須和業務結合才有意義,清楚所在行業的整體結構,對行業的上游和下游的經營情況有大致的了解,在根據業務當前的需要,制定發展計劃,歸類出需要整理的數據,同時,熟悉業務才能看到數據背後隱藏的信息。
3、為了方法而方法,為了工具而工具 。只要能解決問題的方法和工具就是好的方法和工具
4、數據本身是客觀的,但被解讀出來的數據是主觀的 。同樣的數據由不同的人分析很可能得出完全相反的結論,所以一定不能提前帶著觀點去分析
『柒』 數據分析常用的4大分析方法
1. 描述型分析:發生了什麼?
這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。
例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。
2. 診斷型分析:為什麼會發生?
描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。
良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。
3. 預測型分析:可能發生什麼?
預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。
預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。
4. 指令型分析:需要做什麼?
數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。
關於數據分析常用的4大分析方法的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
『捌』 三種數據分析方法
首先,常見的數據分析方法有9種: 對比分析,多維度拆解分析,漏斗觀察 ,分布分析,用戶留存分析,用戶畫像,歸因查找,路徑挖掘,行為序列分析。
這里將重點展開分享前三種數據分析方法: 對比分析,多維度拆解分析,漏斗觀察。
1、對比分析
對比分析是 最基礎最常見 的數據分析方法,能 直觀的看出事物某階段的變化,並且可以准確、量化地表達出這種變化/差距是多少 ,重點從「比什麼」「怎麼比」「跟誰比」三個維度進行分析。
(1)比什麼
比什麼,分為絕對值(#)和比例值(%)的比較。
絕對值本身已是具備「價值」的數據,比如銷售金額2000元,閱讀數10000萬,單看數字不易得知問題的嚴重程度;
比例值只有在具體環境中看比例才具備對比價值 ,比如活躍佔比,注冊轉化率, 單看比例值容易受到極端值的影響。
(2)怎麼比
怎麼比,分為環比和同比。
常見的環比有日環比,月環比 ,是指 與當前時間范圍相鄰的上一個時間范圍對比 ,主要用於對短期內具備連續性的數據進行分析,如指標設定;
常見的同比有周同比,年同比 ,是指 與當前時間范圍上層時間范圍的前一范圍中同樣位置進行數據對比分析 ,主要用於觀察更長期的數據集,消除短期數據的干擾。
(3)和誰比
和誰比,分為和自己比、和行業比。
和自己比 ,可以從不同的時間維度,不同的業務線,過往經驗估計,跟自己比較;
和行業比 ,可以觀察分析得出是自身因素,還是行業趨勢,比如都跌的時候,能否比同行跌的少?都漲的時候,能都比同行漲的快?
現在回到上面這條「飛豬公關數據」「放假消息公布以後,10點到12點,國內機票的預定量,比上周同時段增長超過50%;國際機票的增長更加驚人,超過了150%。」
很顯然,
「50%,150%」都是比例值;
「比上周同時段增長...」由於是#五一放假4天#消息導致的數據短期內連續上漲,所以選擇的是周同比;
「國內機票的預定…國際機票...」飛豬是在跟自己比,若有行業數據公布作為依據,可以判斷飛豬是比同行漲的快/慢。
2、多維度拆解
多維度拆解,是最重要的一種思維方式, 一個單一指標是不具備分析價值的,我們需要從多個維度進行拆解分析才有意義,最終以獲得更加全面的數據洞察。
數據分析的本質是用不同的視角去拆分,觀察同一數據指標。多維度拆解的本質多維度拆分指標/業務流程,來觀察數據變動。
多維度拆解的適用場景:
(1) 分析單一指標的構成、比例時 ,比如分欄目的播放量、新老用戶比例;
(2) 針對流程進行拆解 ,比如不同渠道的瀏覽、購買轉化率,不同省份的活動參與漏斗;
(3) 還原行為發生時的場景 ,比如打賞主播的用戶的等級、性別、關注頻道,是否在WiFi或4G環境下。
現在回到第一個場景:「比如,某段時間公司做了一波網紅大V推廣,老闆想看看推廣效果,你需要來個復盤分析…」
這時就需要用到多維度拆解分析方法,大致的分析思路這樣這樣:
(1)從APP啟動事件來分析
按照 設備類型 查看,比如Android、iPhone…不同機型的啟動情況;
按照 啟動來源 來看,比如是從桌面、簡訊、PUSH…不同來源的啟動情況;
按照 城市等級 觀察,比如一線、二線、三線及以下…不同城市的啟動情況;
按照 新老用戶 細分,比如總體、新用戶、老用戶...不同用戶群體的啟動情況。
(2)從業務流程拆解
比如對於簡單的「注冊——>下單——>支付」流程而言:
支付漏斗按照 渠道 查看,渠道可能分為網路、頭條、微信公眾號…
支付漏斗按照 城市 來看,城市可能分為一線、二線、三線及以下…
支付漏斗按照 設備 來看,設備可能分為Android、iPhone…
3、漏斗觀察
漏斗觀察的分析方法我們常見且熟悉,它的運作原理是 通過一連串向後影響的用戶行為來觀察目標。
適用於有明確的業務流程和業務目標的業務,不適用於沒有明確的業務流程、跳轉關系紛繁復雜的業務。
通過漏斗觀察核心業務流程的健康程度。
盤點一下在建立漏斗時容易掉的坑:
(1)首先漏斗觀察需要有一定的時間窗口 ,具體需要根據業務實際情況,選擇對應的時間窗口。
按天觀察 ,適用於對用戶心智的影響只在短期內有效的情況,比如一些短期活動(當前有效,倒計時設置等);
按周觀察 ,適用於業務本身復雜,用戶決策成本高,需要跨日才能完成的情況,比如投資理財,開戶注資;
按月觀察 ,適用於用戶決策周期更長的情況,比如裝修買房。
(2)其次漏斗觀察是有嚴格順序的 ,不可以用ABCDE(僅搜索途徑的數據)的漏斗,看ACE(包含分類、搜索、推薦位三條途徑的數據)的數據 。
(3)漏斗的計算單位可以基於用戶,也可以基於時間。
觀察用戶,是關心整個業務流程的推動;
觀察事件,是關心某一步具體的轉化率,但無法獲知事件流轉的真實情況。
(4)結果指標的數據不符合預期時,需要自查是否只有一個漏斗能夠觸達最終目標 ,也就是檢查下,是否出現第二個坑的情況。
四、案例分享——某款社交APP在國慶期間數據猛漲原因分析
場景是這樣,現在有一款匿名社交APP,類似於探探,數據范圍在 2018 年 9 月 1 日 - 10 月 14 日之間,其中在國慶期間數據猛漲,試分析其原因。
(1)首先定義「數據猛漲」
作為一款匿名社交產品,可以選擇觀察「注冊成功」事件。
由於產生行為數據的時間較短,所以最後選擇關注「注冊用戶數的日環比是否有比較大的增漲」,並按照「注冊成功」事件的「觸發用戶數」進行查看:
(2)發現異常定位問題
從上面這張注冊成功的觸發用戶數折線圖可以看出,國慶期間的注冊用戶日環比存在較高的數據增長差,就是折線右側出現的一段高峰。
由此判斷,國慶期間由於某種原因造成了注冊用戶數的大幅增長,具體原因,待進一步拆解分析。
(3)多維度拆解分析
按照操作系統區分觀察,可以發現Android的漲幅明顯高於iOS,iOS稍有漲幅,但漲幅不明顯。
這一步仍無法直接定位問題,需進一步拆解分析。
上圖 按照注冊方式觀察 ,微信、微博、手機號這三種注冊方式,在國慶期間均有漲幅且漲幅相似,可初步判斷注冊方式與此次數據異常無關。
上圖 按照性別觀察 ,男生和女生在國慶期間均有漲幅,男生略高於女生,但仍無法直接定位問題,需進一步拆解分析;
上圖 按照年齡觀察 ,不同年齡層的用戶在國慶期間均有漲幅且漲幅相似,可初步判斷年齡與此次數據異常無關。
問題來了!按照省份觀察 ,上圖明顯看到有一根折現異常升高!
其實是海南省的日環比漲幅增高,除此之外,雲南省的環比漲幅相較其他省份也明顯升高。
綜上觀察分析基本可以判斷,國慶期間數據猛漲,跟海南省、雲南省的注冊用戶數大幅增長有關,具體原因待進一步拆解分析。
繼續 按照城市觀察 ,篩選條件設置為省份等於海南省,雲南省,直觀看到麗江市、大理市、三亞市、海口市國慶期間數據猛漲。
綜合以上多維度分析發現,國慶期間數據猛漲,主要是由於 麗江市、大理市、三亞市、海口市 四個城市有明顯漲幅。
而這四個城市都屬於旅遊城市,且數據增長時期伴隨國慶假期。
於是猜測可能是,該款匿名社交產品在國慶期間,面向這四個熱門旅遊目的地,做了推廣活動,關於數據猛漲真實的具體原因,還需要與市場、運營、或負責增長相關的同事溝通確認。
『玖』 數據分析師常用的數據分析思路
01 細分分析
細分分析是數據分析的基礎,單一維度下的指標數據信息價值很低。
細分分析法可以大致分為兩類,一類是逐步分析,如:來北京市的訪客可分為朝陽和海淀等區;另一類是維度交叉,如:來自付費SEM的新訪客。
02 對比分析
對比分析主要是把兩個有關聯的數據指標進行相互比較,從數量上說明和展現研究對象的規模大小,水平的高低,速度快慢等方面的相對值,然後通過在一樣的維度下的指標數據對比,可以發現,找出業務在不同階段的問題。
03 漏斗分析
轉化漏斗分析是數據分析師進行業務分析的基本模型,我們最經常見的就是把最終的轉化設置為某種目的的實現,最典型的就是完成交易。但也可以是其他任何目的的實現,比如一次使用app的時間超過10分鍾。
04 同期群分析
同期群(cohort)分析在數據分析運營領域相當重要,尤其是互聯網運營,特別需要仔細觀察留存的情況。通過對性質完全一樣的可對比群體的留存情況的比較,來分析哪些因素影響用戶的留存。
05 聚類分析
聚類分析具有簡單,直觀的特徵,網站分析中的聚類主要分為:用戶,頁面或內容,來源。
用戶聚類主要體現為用戶分群,用戶標簽法;頁面聚類則主要是相似,相關頁面分組法;來源聚類主要包括渠道,關鍵詞等。
06 AB測試
增長黑客的一個主要思想之一,是千萬不要做一個大又全的東西,相反是需要不斷做出能夠快速驗證的小而精的東西。快速驗證,那如何驗證呢?主要方法就是AB測試。
07 埋點分析
只有採集了足夠的基礎數據,才能通過各種分析方法得到需要的分析結果。
通過分析用戶行為,並細分為:瀏覽行為,輕度交互,重度交互,交易行為,對於瀏覽行為和輕度交互行為的點擊按鈕等事件,因其使用頻繁,數據簡單,採用無埋點技術實現自助埋點,即可以提高數據分析的實效性,需要的數據可立即提取,又大量減少技術人員的工作量,需要採集更豐富信息的行為。
08 來源分析
流量紅利消失,我們對獲客來源的重視度極高,如何有效的標注用戶來源,至關重要。
傳統分析工具,渠道分析僅有單一維度,要深入分析不同渠道不同階段效果,SEM付費搜索等來源渠道和用戶所在地區進行交叉分析,得出不同區域的獲客詳細信息,維度越細,分析結果也越有價值。
09 用戶分析
眾所周知,用戶分析是互聯網運營的核心環節,通常用到的分析方法有:活躍分析,留存分析,用戶分群,用戶畫像,用戶細查等。可將用戶活躍細分為瀏覽活躍,互動活躍,交易活躍等,通過活躍行為的細分,掌握關鍵行為指標。
10 表單分析
表單分析中的填寫表單,這個環節是每個平台與用戶交互的必有環節,一份完美的表單設計,對客戶轉化率的提升有至關重要的作用。
用戶進入表單頁面,這時候就已經產生了微漏斗,從進入的總共的人數到最後完成,並且成功提交表單人數,這個過程之中,有多少人開始填寫表單,填寫表單時,遇到了什麼困難導致無法完成表單,都影響最終的轉化效果。
有關數據分析師常用的數據分析思路的內容,青藤小編就和您分享到這里了。如果您對互聯網大數據有著濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於大數據、數據分析師的技巧及素材等內容,可以點擊本站的其他文章進行學習。