導航:首頁 > 研究方法 > 常用的數據統計分析方法

常用的數據統計分析方法

發布時間:2023-02-11 03:02:44

『壹』 統計分析方法哪些


統計分析方法有以下:
1、描述性統計分析方法。描述性統計分析方法是指運用製表和分類和圖形概括性數據來描述數據的集中趨勢、離散趨勢、偏度、峰度。
2、相關分析方法。相關分析方法是研究現象之間是否存在某種依存關系,對具體有依存關系的現象探討相關方向及相關程度。
3、方差分析方法。方差分析是用來分析一項實驗的影響因素與相應變數的關系,同時考慮多個影響因素之間的關系。
4、列聯表分析方法。列聯表分析是用於分析離散變數或定型變數之間是否存在相關。
5、主成分分析方法。主成分分析方法是將彼此梠關的一組指標變適轉化為彼此獨立的一組新的指標變數,並用其中較少的幾個新指標變數就能綜合反應原多個指標變數中所包含的主要信息。

『貳』 常見的數據統計方法有什麼

常見的數據統計方法有:表格、折線統計圖、條形統計圖、扇形統計圖。舉一個例子來具體分說明一下,比如說:我在淘寶開了個童裝店,為了方便統計每半個月的銷售額,現在用以上這四種統計方法來演示一下。

1.表格就是通過畫格子的方式來統計數據,在這里可以畫三行橫線,得到兩條細長的格子,再把這兩行均勻的分為15個上下格子。橫一為日期,橫二為銷售額,半個月下來都填進去就一目瞭然。

2.折線是通過畫點,把15天的銷售額都連成一條折線,通過上下起伏來看波動的數據。先畫一「L」形,橫線作日期,豎線作銷售額,銷售額可以自己寫一個數,一直往上數與數之間相差一樣。均勻的把橫豎線分為15份,每個日期對應多少銷售額,就在「L」的半框里,以對應的日期和銷售畫橫線和豎線,交叉的位置取一點。然後每天如此,再用直線連接這15個點,就能清楚的看到這半個月哪一天銷售最好,哪一天銷售墊底。

3.條形統計圖作出的是條狀的數據統計圖,和折線統計圖一樣,畫「L」,橫為日期豎為銷售額。只不過這里不畫點點,畫倒立的長方形,然後通過高高低低的條形圖來分析半個月的銷售額。

4.扇形統計圖就是把一個圓形,平均分為15份,一個月下來把所有的日銷售額加起來,用當天的數據除以總數,乘以百分數。每一分里寫上日期和當天銷售額占總數的百分比,用這個百分數來統計半個月的數據。每個圖的做法都不一樣,但表達的意思都是同樣的,這就是日常生活中最常見的幾種數據統計。

『叄』 16種常用的數據分析方法匯總

一、描述統計

描述性統計是指運用製表和分類,圖形以及計筠概括性數據來描述數據的集中趨勢、離散趨勢、偏度、峰度。

1、缺失值填充:常用方法:剔除法、均值法、最小鄰居法、比率回歸法、決策樹法。

2、正態性檢驗:很多統計方法都要求數值服從或近似服從正態分布,所以之前需要進行正態性檢驗。常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法。

二、假設檢驗

1、參數檢驗

參數檢驗是在已知總體分布的條件下(一股要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗 。

1)U驗  使用條件:當樣本含量n較大時,樣本值符合正態分布

2)T檢驗 使用條件:當樣本含量n較小時,樣本值符合正態分布

A  單樣本t檢驗:推斷該樣本來自的總體均數μ與已知的某一總體均數μ0 (常為理論值或標准值)有無差別;

B  配對樣本t檢驗:當總體均數未知時,且兩個樣本可以配對,同對中的兩者在可能會影響處理效果的各種條件方面扱為相似;

C 兩獨立樣本t檢驗:無法找到在各方面極為相似的兩樣本作配對比較時使用。

2、非參數檢驗

非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一股性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。

適用情況:順序類型的數據資料,這類數據的分布形態一般是未知的。

A 雖然是連續數據,但總體分布形態未知或者非正態;

B 體分布雖然正態,數據也是連續類型,但樣本容量極小,如10以下;

主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。

三、信度分析

檢査測量的可信度,例如調查問卷的真實性。

分類:

1、外在信度:不同時間測量時量表的一致性程度,常用方法重測信度

2、內在信度;每個量表是否測量到單一的概念,同時組成兩表的內在體項一致性如何,常用方法分半信度。

四、列聯表分析

用於分析離散變數或定型變數之間是否存在相關。

對於二維表,可進行卡方檢驗,對於三維表,可作Mentel-Hanszel分層分析。

列聯表分析還包括配對計數資料的卡方檢驗、行列均為順序變數的相關檢驗。

五、相關分析

研究現象之間是否存在某種依存關系,對具體有依存關系的現象探討相關方向及相關程度。

1、單相關: 兩個因素之間的相關關系叫單相關,即研究時只涉及一個自變數和一個因變數;

2、復相關 :三個或三個以上因素的相關關系叫復相關,即研究時涉及兩個或兩個以上的自變數和因變數相關;

3、偏相關:在某一現象與多種現象相關的場合,當假定其他變數不變時,其中兩個變數之間的相關關系稱為偏相關。

六、方差分析

使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態分布總體;各總體方差相等。

分類

1、單因素方差分析:一項試驗只有一個影響因素,或者存在多個影響因素時,只分析一個因素與響應變數的關系

2、多因素有交互方差分析:一頊實驗有多個影響因素,分析多個影響因素與響應變數的關系,同時考慮多個影響因素之間的關系

3、多因素無交互方差分析:分析多個影響因素與響應變數的關系,但是影響因素之間沒有影響關系或忽略影響關系

4、協方差分祈:傳統的方差分析存在明顯的弊端,無法控制分析中存在的某些隨機因素,使之影響了分祈結果的准確度。協方差分析主要是在排除了協變數的影響後再對修正後的主效應進行方差分析,是將線性回歸與方差分析結合起來的一種分析方法,

七、回歸分析

分類:

1、一元線性回歸分析:只有一個自變數X與因變數Y有關,X與Y都必須是連續型變數,因變數y或其殘差必須服從正態分布。

2、多元線性回歸分析

使用條件:分析多個自變數與因變數Y的關系,X與Y都必須是連續型變數,因變數y或其殘差必須服從正態分布 。

1)變呈篩選方式:選擇最優回歸方程的變里篩選法包括全橫型法(CP法)、逐步回歸法,向前引入法和向後剔除法

2)橫型診斷方法:

A 殘差檢驗: 觀測值與估計值的差值要艱從正態分布

B 強影響點判斷:尋找方式一般分為標准誤差法、Mahalanobis距離法

C 共線性診斷:

診斷方式:容忍度、方差擴大因子法(又稱膨脹系數VIF)、特徵根判定法、條件指針CI、方差比例

處理方法:增加樣本容量或選取另外的回歸如主成分回歸、嶺回歸等

3、Logistic回歸分析

線性回歸模型要求因變數是連續的正態分布變里,且自變數和因變數呈線性關系,而Logistic回歸模型對因變數的分布沒有要求,一般用於因變數是離散時的情況

分類:

Logistic回歸模型有條件與非條件之分,條件Logistic回歸模型和非條件Logistic回歸模型的區別在於參數的估計是否用到了條件概率。

4、其他回歸方法 非線性回歸、有序回歸、Probit回歸、加權回歸等

八、聚類分析

樣本個體或指標變數按其具有的特性進行分類,尋找合理的度量事物相似性的統計量。

1、性質分類:

Q型聚類分析:對樣本進行分類處理,又稱樣本聚類分祈 使用距離系數作為統計量衡量相似度,如歐式距離、極端距離、絕對距離等

R型聚類分析:對指標進行分類處理,又稱指標聚類分析 使用相似系數作為統計量衡量相似度,相關系數、列聯系數等

2、方法分類:

1)系統聚類法: 適用於小樣本的樣本聚類或指標聚類,一般用系統聚類法來聚類指標,又稱分層聚類

2)逐步聚類法 :適用於大樣本的樣本聚類

3)其他聚類法 :兩步聚類、K均值聚類等

九、判別分析

1、判別分析:根據已掌握的一批分類明確的樣品建立判別函數,使產生錯判的事例最少,進而對給定的一個新樣品,判斷它來自哪個總體

2、與聚類分析區別

1)聚類分析可以對樣本逬行分類,也可以對指標進行分類;而判別分析只能對樣本

2)聚類分析事先不知道事物的類別,也不知道分幾類;而判別分析必須事先知道事物的類別,也知道分幾類

3)聚類分析不需要分類的歷史資料,而直接對樣本進行分類;而判別分析需要分類歷史資料去建立判別函數,然後才能對樣本進行分類

3、進行分類 :

1)Fisher判別分析法 :

以距離為判別准則來分類,即樣本與哪個類的距離最短就分到哪一類, 適用於兩類判別;

以概率為判別准則來分類,即樣本屬於哪一類的概率最大就分到哪一類,適用於

適用於多類判別。

2)BAYES判別分析法 :

BAYES判別分析法比FISHER判別分析法更加完善和先進,它不僅能解決多類判別分析,而且分析時考慮了數據的分布狀態,所以一般較多使用;

十、主成分分析

將彼此梠關的一組指標變適轉化為彼此獨立的一組新的指標變數,並用其中較少的幾個新指標變數就能綜合反應原多個指標變數中所包含的主要信息 。

十一、因子分析

一種旨在尋找隱藏在多變數數據中、無法直接觀察到卻影響或支配可測變數的潛在因子、並估計潛在因子對可測變數的影響程度以及潛在因子之間的相關性的一種多元統計分析方法

與主成分分析比較:

相同:都能夠起到済理多個原始變數內在結構關系的作用

不同:主成分分析重在綜合原始變適的信息.而因子分析重在解釋原始變數間的關系,是比主成分分析更深入的一種多元統計方法

用途:

1)減少分析變數個數

2)通過對變數間相關關系探測,將原始變數進行分類

十二、時間序列分析

動態數據處理的統計方法,研究隨機數據序列所遵從的統計規律,以用於解決實際問題;時間序列通常由4種要素組成:趨勢、季節變動、循環波動和不規則波動。

主要方法:移動平均濾波與指數平滑法、ARIMA橫型、量ARIMA橫型、ARIMAX模型、向呈自回歸橫型、ARCH族模型

十三、生存分析

用來研究生存時間的分布規律以及生存時間和相關因索之間關系的一種統計分析方法

1、包含內容:

1)描述生存過程,即研究生存時間的分布規律

2)比較生存過程,即研究兩組或多組生存時間的分布規律,並進行比較

3)分析危險因素,即研究危險因素對生存過程的影響

4)建立數學模型,即將生存時間與相關危險因素的依存關系用一個數學式子表示出來。

2、方法:

1)統計描述:包括求生存時間的分位數、中數生存期、平均數、生存函數的估計、判斷生存時間的圖示法,不對所分析的數據作出任何統計推斷結論

2)非參數檢驗:檢驗分組變數各水平所對應的生存曲線是否一致,對生存時間的分布沒有要求,並且檢驗危險因素對生存時間的影響。

A 乘積極限法(PL法)

B 壽命表法(LT法)

3)半參數橫型回歸分析:在特定的假設之下,建立生存時間隨多個危險因素變化的回歸方程,這種方法的代表是Cox比例風險回歸分析法

4)參數模型回歸分析:已知生存時間服從特定的參數橫型時,擬合相應的參數模型,更准確地分析確定變數之間的變化規律

十四、典型相關分析

相關分析一般分析兩個變里之間的關系,而典型相關分析是分析兩組變里(如3個學術能力指標與5個在校成績表現指標)之間相關性的一種統計分析方法。

典型相關分析的基本思想和主成分分析的基本思想相似,它將一組變數與另一組變數之間單變數的多重線性相關性研究轉化為對少數幾對綜合變數之間的簡單線性相關性的研究,並且這少數幾對變數所包含的線性相關性的信息幾乎覆蓋了原變數組所包含的全部相應信息。

十五、R0C分析

R0C曲線是根據一系列不同的二分類方式(分界值或決定閾).以真陽性率(靈敏度)為縱坐標,假陽性率(1-特異度)為橫坐標繪制的曲線

用途:

1、R0C曲線能很容易地査出任意界限值時的對疾病的識別能力

用途

2、選擇最佳的診斷界限值。R0C曲線越靠近左上角,試驗的准確性就越高;

3、兩種或兩種以上不同診斷試驗對疾病識別能力的比較,一股用R0C曲線下面積反映診斷系統的准確性。

十六、其他分析方法

多重響應分析、距離分祈、項目分祈、對應分祈、決策樹分析、神經網路、系統方程、蒙特卡洛模擬等。

『肆』 統計數據分析的基本方法有哪些

1、對比分析法


就是將某一指標與選定的比較標准進行比較,比如:與歷史同期比較、與上期比較、與其他競爭對手比較、與預算比較。一般用柱狀圖進行呈現。


2、結構分析法


就是對某一項目的子項目佔比進行統計和分析,一般用餅圖進行呈現。比如:A公司本年度營業額為1000萬,其中飲料營業額佔33.6%、啤酒佔55%,其他產品的營業額佔11.4%。


3、趨勢分析法


就是對某一指標進行連續多個周期的數據進行統計和分析,一般用折線圖進行呈現。比如:A公司前年度營業額為880萬,去年900萬,本年度1000萬,預計明年為1080萬。


4、比率分析法


就是用相對數來表示不同項目的數據比率,比如:在財務分析中有“盈利能力比率、營運能力比率、償債能力比率、增長能力比率”。


5、因素分析法


就是對某一指標的相關影響因素進行統計與分析。比如,房價與物價、土地價格、地段、裝修等因素有關


6、綜合分析法


就是運用多種分析方法進行數據的統計與分析,比如:5W2H分析法、SWOT分析法、PEST分析法、漏斗分析法等。

『伍』 數據分析的方法有哪些

數據分析的方法有:對比分析法,分組分析法,預測分析法,漏斗分析法,AB測試分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假設性分析法。

1.對比分析法:對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。

橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。

數據分析方法是‬數據統計學‬當中‬應用‬非常‬廣泛‬的方法‬,具體‬方法‬有很多種‬,具體採用的時候因人而異。

『陸』 如何進行統計數據分析

根據網路知道查詢進行統計數據分析有8種方法,具體方法如下:
1、指標對比分析法指標對比分析法,又稱比較分析法,是統計分析中最常用的方法。是通過有關的指標對比來反映事物數量上差異和變化的方法。有比較才能鑒別。單獨看一些指標,只能說明總體的某些數量特徵,得不出什麼結論性的認識。一經過比較,如與國外、外單位比,與歷史數據比,與計劃相比,就可以對規模大小、水平高低、速度快慢作出判斷和評價。
2、分組分析法指標對比分析法是總體上的對比,但組成統計總體的各單位具有多種特徵,這就使得在同一總體范圍內的各單位之間產生了許多差別,統計分析不僅要對總體數量特徵和數量關系進行分析,還要深入總體的內部進行分組分析。分組分析法就是根據統計分析的目的要求,把所研究的總體按照一個或者幾個標志劃分為若干個部分,加以整理,進行觀察、分析,以揭示其內在的聯系和規律性。
3、時間數列及動態分析法時間數列。是將同一指標在時間上變化和發展的一系列數值,按時間先後順序排列,就形成時間數列,又稱動態數列。它能反映社會經濟現象的發展變動情況,通過時間數列的編制和分析,可以找出動態變化規律,為預測未來的發展趨勢提供依據。時間數列可分為絕對數時間數列、相對數時間數列、平均數時間數列。
4、指數分析法指數是指反映社會經濟現象變動情況的相對數。有廣義和狹義之分。根據指數所研究的范圍不同可以有個體指數、類指數與總指數之分。
5、平衡分析法平衡分析是研究社會經濟現象數量變化對等關系的一種方法。它把對立統一的雙方按其構成要素一一排列起來,給人以整體的概念,以便於全局來觀察它們之間的平衡關系。平衡關系廣泛存在於經濟生活中,大至全國宏觀經濟運行,小至個人經濟收支。平衡種類繁多,如財政平衡表、勞動力平衡表、能源平衡表、國際收支平衡表、投入產出平衡表,等等。平衡分析的作用:一是從數量對等關繫上反映社會經濟現象的平衡狀況,分析各種比例關系相適應狀況。二是揭示不平衡的因素和發展潛力。三是利用平衡關系可以從各項已知指標中推算未知的個別指標。
6、綜合評價分析社會經濟分析現象往往是錯綜復雜的,社會經濟運行狀況是多種因素綜合作用的結果,而且各個因素的變動方向和變動程度是不同的。如對宏觀經濟運行的評價,涉及生活、分配、流通、消費各個方面。對企業經濟效益的評價,涉及人、財、物合理利用和市場銷售狀況。如果只用單一指標,就難以作出恰當的評價。
7、景氣分析經濟波動是客觀存在的,是任何國家都難以完全避免的。如何避免大的經濟波動,保持經濟的穩定發展,一直是各國政府和經濟之專家在宏觀調控和決策中面臨的重要課題,景氣分析正是適應這一要求而產生和發展的。景氣分析是一種綜合評價分析,可分為宏觀經濟景氣分析和企業景氣調查分析。
8、預測分析宏觀經濟決策和微觀經濟決策,不僅需要了解經濟運行中已經發生了的實際情況,而且更需要預見未來將發生的情況。根據已知的過去和現在推測未來,就是預測分析。

『柒』 簡述至少6種對數據進行統計分析的方法

2007年10月北京自考《市場調查》真題簡答題第3題

請簡述至少6種對數據進行統計分析的方法。

答: 1)頻次分布。

2)平均數和標准差。

3)相關分析。

4)回歸分析就是根據已知的現象對未知的現象作出預測的一種科學方法。

5)聚類分析是按照個體的特徵將它們加以分類,使同一類別內的個體具有盡可能高的同質性,而類別之間則具有盡可能高的異質性。尤其是在對消費者進行細分時,我們通常會使用聚類分析的方法。

6)因子分析是一種多變數化簡技術,目的是分解原始變數,從中歸納出潛在的「類別」。

7)聯合分析是一種評價消費者偏好的方法它採用分解的辦法,即讓消費者給一系列的產品輪廓賦值,用這些賦值來計算偏好參數。這些參數可以是分值、權重、理想點等等。

『捌』 統計數據有哪些方法

統計數據是表示某一地理區域自然經濟要素特徵、規模,結構、水平等指標的數據。是定性、定位和定量統計分析的基礎數據。比如我們通常所說的統計年鑒,那統計數據有哪些方法?

1、 普查:普查是為了某種特定的目的而專門組織的一次性的全面調查,用以搜集重要國情國力和資源狀況的全面資料,為政府制定規劃、方針政策提供依據。

2、 抽樣調查:抽樣調查是實際應用中最廣泛的一種調查方法,他是從調查對象的總體中隨機抽取一部分單位座位樣本進行調查,並根據樣本調查結果來推斷總體數量特徵的一種非全面調查方法。

3、 統計報表:統計報表是一種以全面調查為主的調查方式,它是由政府主管部門根據統計法規,以統計表格形式和行政手段自上而下布置,而後由企、事業單位自下而上層層匯總上報逐級提供基本統計數據的一種調查方式

4、 重點調查:重點調查是專門組織的一種非全面調查,它是在總體中選擇個別的或部分重點單位進行調查,以了解總體的基本情況。

5、 典型調查:典型調查也是專門組織的一種非全面調查,它是根據調查研究的目的和要求,在對總體進行全面分析的基礎上,有意識的選擇其中有代表性的典型單位進行深入細致的調查,藉以認識事物的本質特徵、因果關系和發展變化規律。

以上是關於統計數據的方法,但不是每種方法都適合使用,需要根據事情而決定,希望對你有用吧!

『玖』 數據統計分析方法有哪些

1、分解主題分析


所謂分解主題分析,是指對於不同分析要求,我們可以初步分為營銷主題、財務主題、靈活主題等,然後將這些大的主題逐步拆解為不同小的方面來進行分析。


2、鑽取分析


所謂鑽取分析,是指改變維的層次,變換分析的粒度。按照方向方式分為:向上和向下鑽取。向上鑽取是在某一維上將低層次的細節數據概括到高層次的匯總數據,或者減少維數;是自動生成匯總行的分析方法。向下鑽取是從匯總數據深入到細節數據進行觀察或增加新維的分析方法。


3、常規比較分析


所謂常規比較分析,是指一般比較常見的對比分析方法,例如有時間趨勢分析、構成分析、同類比較分析、多指標分析、相關性分析、分組分析、象限分析等。


4、大型管理模型分析


所謂大型管理模型分析,是指依據各種成熟的、經過實踐論證的大型管理模型對問題進行分析的方法。比較常見的大型管理模型分析包括RCV模型、阿米巴經營、品類管理分析等。


5、財務和因子分析


所謂財務和因子分析,主要是指因子分析法在財務信息分析上的廣泛應用。因子分析的概念起源於20世紀初的關於智力測試的統計分析,以最少的信息丟失為前提,將眾多的原有變數綜合成較少的幾個綜合指標,既能大大減少參與數據建模的變數個數,同時也不會造成信息的大量丟失,達到有效的降維。比較常用的財務和因子分析法有杜邦分析法、EVA分析、財務指標、財務比率、坪效公式、品類公式、流量公式等。


6、專題大數據分析


所謂專題大數據分析,是指對特定的一些規模巨大的數據進行分析。大數據常用來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。常見特徵是數據量大、類型繁多、價值密度低、速度快、時效低。比較常見的專題大數據分析有:市場購物籃分析、重力模型、推薦演算法、價格敏感度分析、客戶分組分析等分析方法。

『拾』 統計學中常用的數據分析方法有哪些

1、描述統計


描述統計是通過圖表或數學方法,對數據資料進行整理、分析,並對數據的分布狀態、數字特徵和隨機變數之間關系進行估計和描述的方法。描述統計分為集中趨勢分析、離中趨勢分析和相關分析三大部分。


2、假設檢驗


參數檢驗:參數檢驗是在已知總體分布的條件下(一般要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗。


非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一股性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。


3、信服分析


介紹:信度(Reliability)即可靠性,它是指採用同樣的方法對同一對象重復測量時所得結果的一致性程度。


信度指標多以相關系數表示,大致可分為三類:穩定系數(跨時間的一致性),等值系數(跨形式的一致性)和內在一致性系數(跨項目的一致性)。信度分析的方法主要有以下四種:重測信度法、復本信度法、折半信度法、α信度系數法。

閱讀全文

與常用的數據統計分析方法相關的資料

熱點內容
入黨外調最簡單的方法 瀏覽:937
電腦蝸牛快速緩解方法 瀏覽:896
山楂干功效與作用及食用方法 瀏覽:753
如何用簡單的方法掌握值域 瀏覽:33
做信息如何給企業賦能提供方法 瀏覽:913
excel公式的使用方法 瀏覽:995
普洱茶餅正確沖泡方法 瀏覽:966
糖類和苷類的常用鑒別方法 瀏覽:834
湖北小規模殘保金計算方法 瀏覽:342
plc無線連接方法 瀏覽:540
電影作者研究的方法有 瀏覽:981
期貨技術分析方法是一面鏡子 瀏覽:274
生產食用植物油的方法 瀏覽:224
怎麼防止蟑螂的最好方法 瀏覽:712
動態聚類分析方法 瀏覽:831
快板怎麼拿的方法對 瀏覽:991
藏芽法嫁接方法視頻 瀏覽:757
倉鼠在家鍛煉方法 瀏覽:887
如何預防感冒的方法稿件 瀏覽:843
冰犀牛角鑒別方法 瀏覽:719