一、熱力學與統計物理的研究對象、方法與特點
研究對象:宏觀物體熱性質與熱現象有關的一切規律。
方法與特點:
熱力學:
以大量實驗總結出來的幾條定律為基礎,應用嚴密
邏輯推理和嚴格數學運算來研究宏觀物體熱性質與
熱現象有關的一切規律。
較普遍、可靠,但不能求特殊性質。
統計物理:
從物質的微觀結構出發,考慮微觀粒子的熱運動,
通過求統計平均來研究宏觀物體熱性質與熱現象有
關的一切規律。
可求特殊性質,但可靠性依賴於微觀結構的假設,
計算較麻煩。
兩者體現了歸納與演繹不同之處,可互為補充,取長
補短。
宏觀與微觀的關系:
微觀粒子的熱運動與系統的各種宏觀熱
現象之間存在著內在的聯系。宏
觀量等於微觀量的統計平均
值。
宏觀與微觀
宏觀現象與宏觀量:
宏觀現象即一個系統所表現出來的各
種物理性質以及這些性質的變化規律。描述一個系統宏觀
性質的物理量稱為宏觀量。例:
P
、
V、
T
、
E
、
C等。
微觀運動與微觀量:
微觀運動即系統內部的微觀粒子的熱
運動。描述微觀粒子熱運動的
物理量稱為微觀量。例:
m
、
v
、
等。
二、熱力學理論的發展
1 經典熱力學
1824
年:
卡諾定理:
卡諾(Carnot)
1840』s:熱力學第一定律:
能量守恆定律
邁爾(Mayer)、焦耳(Joule)
1850』s:熱力學第二定律、熵增加原理:
克勞修斯(Clausius)、開爾文(Kelvin):
1906
年:
熱力學第三定律:
能斯特定理,能斯特(Nernst)
Sadi Carnot
(1796-1832 )
J.R.Mayer
(1814-1878)
J.P.Joule
(1818-1889)
R. Clausius
(1822-1888)
W. T. Kelvin
(1824-1907)
W. H. Nernst
(1864-1941)
•
不涉及時間與空間;
•
以平衡態、准靜態過程、可逆過程為模型;
•
經典熱力學
靜熱力學。
經典熱力學特點:
(
1
)線性非平衡態熱力學
翁薩格(Onsager),1968年諾貝爾獎
2 非平衡態熱力學(1930』s)
(
2
)非線性非平衡態熱力學
普里果金(Prigogine),1977年諾貝爾化學獎
Lars Onsager
(1903-1976)
Llya
Prigogine
(1917-2003)
•
工程熱力學
•
有限時間熱力學
•
……
3 現代熱力學
三. 統計物理理論的發展
量子統計理論:
普朗克(
Planck
(
1858~1947
))愛因斯坦
( Einstein
(
1879~1955
))、玻色、費米、狄拉克等將量子
力學理論與統計理論相結合,建立並完善了量子統計理論。
起源:
氣體分子動理論(
Kinetic Theory of Gases
)
第一個氣體分子動理論模型的提出:
1738
年,由瑞士物理學
家柏努利(
Daniel Bernoulli
)提出。
統計物理系統理論的建立:
奧地利物理學家玻爾茲曼
(
Ludwig Bottzmann, 1844~1906
)、美國科學家吉布斯
( J. Willard Gibbs,
1839~1903
)等人做了統計物理奠基性
的工作,發展了統計系綜理論,從而
真正開創了統計物理的
系統理論。
吉布斯
(Josiah Willard
Gibbs,1839-1903),
美國
理論物理學家,統計系
綜理論的首創者
柏努利(
Daniel
Bernoulli,1700-
1782)
1
)提出柏努利原理
2
)從氣體粒子碰撞
容器壁的觀點說明壓
強,最早採用數學方
式表述氣體運動論。
麥克斯韋(
James
Clerk Maxwell 1831-
1879)
從事電磁理論、分子
物理學、統計物理
學、光學等方面的研
究,建立的電磁場理
論。
2. 經典熱力學的宏觀方法
實驗觀察。經典熱力學的宏觀方法是實驗觀察。經典熱力學(宏觀熱力學)以熱力學三個定律為基礎,利用熱力學數據,研究平衡系統各宏觀性質之間的相互關系,揭示變化過程的方向和限度。
3. 化工熱力學的研究方法
統計力學結合構作半經驗模型的方法,在化工熱力學的發展過程中正起著越來越重要的作用。它使建築在熱力學基本定律上的化工熱力學,在解決其主要課題時,沒有受到經典熱力學方法的限制。統計力學是從物質的微觀模型出發,運用統計的方法,導出微觀結構與宏觀性質之間的關系,例如從分子間相互作用的位能函數和徑向分布函數,導出p-V-T關系。但由於分子結構十分復雜,統計力學目前還只能處理比較簡單的情況。對於比較復雜的實際系統,須先作簡化,建立一些半經驗的數學模型,利用實驗數據,回歸模型參數。這種方法,在研究狀態方程和活度系數方程中已廣泛使用。
4. 求解實際氣體的熱力學性質用什麼方法
用直接積分計算的方法非常麻煩又難以實現: 實際流體的狀態方程往往比較復雜, 其比熱容數據也很少 變通的方法:(實際流體的性質可以認為是對理 想氣體性質的一種偏差修正) 理想氣體的比熱容僅僅與溫度有關, 熱力性質的計算相對比較容易。 實際氣體的狀態方程 實際氣體狀態方程 •研究實際氣體性質首先要求得出精確的狀態方程式。 研究狀態方程有兩種方法:
1、直接利用由實驗得到的各種熱系數數據,按熱力學 關系組成狀態方程。
2、從理論分析出發,考慮氣體分子運動的行為而對理 想氣體狀態方程引入一些常數加以修正,得出方程的 形式,引入常數的值則根據實驗數據確定。
5. 化工過程熱力學分析方法有哪幾種
熱力學是物理學的一個組成部分,它是在蒸汽機發展的推動下,於19世紀中葉開始形成的。最初只涉及熱能與機械能之間的轉換,之後逐漸擴展到研究與熱現象有關的各種狀態變化和能量轉換的規律。在熱力學的基本定律中,熱力學第一定律表述能量守恆關系,熱力學第二定律從能量轉換的特點論證過程進行的方向。這兩個定律具有普遍性,在化學、生物學、機械工程、化學工程等領域得到了廣泛的應用。熱力學基本定律應用於化學領域,形成了化學熱力學,其主要內容有熱化學、相平衡和化學平衡的理論;熱力學基本定律應用於熱能動力裝置,如蒸汽動力裝置、內燃機、燃氣輪機、冷凍機等,形成了工程熱力學,其主要內容是研究工質的基本熱力學性質以及各種裝置的工作過程,探討提高能量轉換效率的途徑。化工熱力學是以化學熱力學和工程熱力學為基礎,在化學工業的發展中逐步形成的。化工生產的發展,出現了蒸餾、吸收、萃取、結晶、蒸發、乾燥等許多單元操作,以及各種不同類型的化學反應過程,生產的規模也愈來愈大,由此提出了一系列的研究課題。例如在傳質分離設備的設計中,要求提供多組分系統的溫度、壓力和各相組成間的相互關系的數學模型。一般化學熱力學很少涉及多組分系統,它不僅需要熱力學,還需要應用一些統計力學和經驗方法。在能量的有效利用方面,化工生產所涉及的工作介質比工程熱力學研究的工作介質(空氣、蒸汽、燃料氣等)要復雜得多,且能量的消耗常在生產費用中佔有很高比例,因此更需要研究能量的合理利用和低溫位能量的利用,並建立適合於化工過程的熱力學分析方法。1939年,美國麻省理工學院教授H.C.韋伯寫出了《化學工程師用熱力學》一書。1944年,美國耶魯大學教授 B.F.道奇寫出了名為《化工熱力學》的教科書。這樣,化工熱力學就逐步形成為一門學科。隨著化學工業規模的擴大,新過程的開發,以及大型電子計算機的應用,化工熱力學的研究有了較大的發展。世界各國化工熱力學專家在1977年舉行了首屆流體性質和相平衡的國際會議,1980和1983年分別舉行了第二屆和第三屆會議,還出版了期刊《流體相平衡》。化工熱力學已列為大學化學工程專業的必修課程。
6. 熱力學研究的經典方法和統計方法有什麼區別
用統計方法研究的叫統計力學,和傳統的熱力學不一樣,所謂熱力學就是指從熱力學四大定律出發,純粹依靠數學推導而得出整個理論系統。雖然從實際應用上來講,二者應用的領域大致相同,但從理論上來講卻是完全不一樣的,統計力學從微觀的分子、原子出發研究熱現象,因而要依賴實驗的精度,而熱力學是一種純粹的惟像的理論,因而只要四大定律不違背事實,熱力學理論所推導出的一切結果就都沒有問題。這正是熱力學獨有的優越性,因此愛因斯坦對熱力學理論的優美性大為欣賞,實踐也證明,到今天為止,物理學所有相關理論都被量子力學滲透了,像什麼量子電動力學,相對論量子力學。唯有熱力學仍然自成體系。
7. 熱力學研究問題的方法
歸納法.通過收集大量的實驗結果歸納出來的結論.
8. 與力學相比,熱學研究對象,研究的方法有哪些主要區分
1、研究對象不一樣。力學研究的是少體問題,主要集中於單體和兩體問題。熱學研究的是多粒子系統的統計熱力學性質。
2、研究理論不一樣。經典力學基於牛頓運動學方程,研究物體的動力學演化過程,量子力學基於薛定諤方程,研究微觀粒子的動力學演化過程,相對論量子力學基於迪拉克方程,研究具有相對論效應粒子的動力學演化過程;熱力學主要手段是統計的方法,得到的是多粒子的體系的平均性質。
3、作用不一樣。力學可以弄清楚兩個原子之間的相互作用,可以區分不同種類的原子,而熱學研究的是整個原子系統的平均性質,難以區分是哪類原子,因為統計不可能具體到某個原子,是集體行為,所以研究對象和研究方法有很大差別。
(8)什麼熱力學研究方法更直觀擴展閱讀:
力學主要理論
1、物體運動三定律。
2、達朗貝爾原理。
3、分析力學理論。
4、連續介質力學理論。
5、彈性固體力學基本理論。
6、粘性流體力學基本理論。
9. 熱力學方法的三個特點
熱力學方法的三個特點:統計物理的研究對象、方法與特點。
熱力狀態:狀態可能是平衡的,也可能是非平衡的(見熱力平衡)。經典熱力學研究的通常是熱力平衡狀態和由平衡狀態所組成的過程。用於描述熱力系統狀態的物理量稱為熱力狀態參數,或簡稱狀態參數,如壓力、溫度和比容等。
狀態參數的數值僅僅取決於熱力系統的狀態,而與達到這種狀態所經歷的熱力過程無關。因此,給定的狀態有確定的狀態參數值。換句話說,當一個狀態參數的數值發生變化時,熱力系統的狀態也就發生變化。臨界狀態是熱力狀態的一種特定情況。
熱力的計算:
蒸汽和熱水的勢力計算,與鍋爐出口蒸汽、熱水的溫度和壓力有關,計算方法:
第一步:確定鍋爐出口蒸汽和熱水的溫度和壓力,根據溫度和壓力值,在焓熵圖(表)查出對應的每千克蒸汽、熱水的熱焓。
第二步:確定鍋爐給水(或回水)的溫度和壓力,根據溫度和壓力值,在焓熵圖(表)查出對應的每千克給水(或回水)的熱焓。
第三步:求第一步和第二步查出的熱焓之差,再乘以蒸汽或熱水的數量(按流量表讀數計算),所得值即為熱力的量。