① 光譜分析儀的使用方法
使用方法:開機步驟
1、開光譜儀電源
2、開計算機電源
3、在文件管理器中用滑鼠指按UV WinLab圖標,此時出現UV WinLab的應用窗口,儀器已准備好,可選用適當方法進行分析操作。
一、方法:在分析中必須對分光光度計設定一些必要的參數,這些參數的組合就形成一個「方法」。Lambda系列UV WinLab軟體預設四類常用方法。
1)掃描(SCAN),用以進行光譜掃描。
2)時間驅動(TIME DRIVER),用以觀察一定時間內某種特定波長處縱坐標值的變化,如酶動力學。
3)波長編程(WP)用以在多個波長下測定樣品在一定時間內的縱坐標值變化,並可以計算這些縱坐標值的差或比值。
4)濃度(CONC)用以建立標准曲線並測定濃度。
2.1 進入所需方法,在方法窗口中選擇所需方法的文件名。
二、方法的設定
掃描、波長編程及時間驅動各項方法可根據顯示的參數表,逐項按需要選用或填入,並可參考提示。
濃度
濃度方法窗口下方標簽較多,說明做濃度測定時需要參數較多。用滑鼠指按每一標簽,可翻出下頁,其上有一些需要測定的參數。必須逐頁設定。
三、工具條
1)SETUP
當所需的各項參數都已在參數中設好後,必須用滑鼠指按SETUP,才能將儀器調整到所設狀態。
2)AUTOZERO 用滑鼠指按此鍵,分光光度計即進行調零(在光譜掃描中則進行基線校正)。
3)START 用滑鼠指按此鍵,光度計即開始運行所設定的方法。
四、方法運行
1)掃描,時間驅動,波長編程方法選好後,先放入參比溶液,按AUTOZERO鍵,進行自自動校零或背景校正結束後再放入樣品,按START,分光光度計即開始進行,同時屏幕上出現圖形窗口,將結果顯示出來。
2)濃度
3)制訂標准曲線
(1)方法選好後,確認各項數據正確,特別是REFS頁中第一行要選中右上角的「edit mode」。再放入參比溶液,按AUTOZERO鍵自動校零或背景校正。
(2)按setup,待該圖標消失後,再按「start」,按提示依次放入標准色列的各管溶液,每次都按提示進行操作。
(3)標准色列測定完畢後,屏幕上出現calibgraphwindow,顯示擬合的標准線,並標出各項標准管的位置,屏幕下方還有一條ConcentraTIon mode的對話框,可以用來修改擬合的曲線類型(按 change calbraTIon),或修改標准溶液的任何一管(replace),或取消某一管(delete),或增加標准溶液管數(add)。如過已經滿意,則按analyse sample鍵,進入樣品測定窗口。
(4)標准曲線有關的各項數據,均在calibresultwindow中,可用滑鼠將其調出觀察。其中包括每個標准溶液的具體數據,標准曲線的回程方程式,相關系數,殘差。
五、樣品濃度測定
剛制定好的標准曲線接著進行樣品濃度測定時
1)只需在concentraTIon mode對話框按analyse sample鍵,進入樣品測定窗口。
2 )按設定的樣品順序放入各樣品管,每次按提示進行操作。
3 )屏幕上出現結果窗口,結果數據將依次顯示在樣品表中的相應位置。
(1)利用原有的標准曲線接著進行樣品濃度測定時
(2)調出所測定樣品的濃度方法文件,首先調出refs頁,將原設edit mode選項取消,改設左上角的using exiting calibration。重新將方法存檔,則今後再調用時即不需再作修改。
(3) 在sample頁中按要求重設各種樣品名稱機樣品信息。
(4)按工具條中setup鍵,將主機設到該方法所設定的條件。
(5)將參比溶液放入比色室,按autozero鍵做背景校零。
(6) 按start鍵,按設定的樣品順序放入各樣品管,每次按提示進行操作。
(7) 屏幕上出現結果窗口,結果數據將依次顯示在樣品表中相應位置。
六、關機
1)將方法及數據存檔
2)關閉方法窗
3)退出UV WinLab
4) 取出樣品及參比溶液
5)清潔光譜儀,特別是樣品室
6)關閉光譜電源
7)關閉計算機電源
根據現代光譜儀器的工作原理,光譜儀可以分為兩大類:經典光譜儀和新型光譜儀。經典光譜儀器是建立在空間色散原理上的儀器:新型光譜儀器是建立在調制原理上的儀器.經典光譜儀器都是狹縫光譜儀器。調制光譜儀是非空間分光的,它採用圓孔進光根據色散組件的分光原理,光譜儀器可分為:棱鏡光譜儀,衍射光柵光譜儀和干涉光譜儀.光學多道OMA(Optical Multi-channel Analyzer)是近十幾年出現的採用光子探測器(CCD)和計算機控制的新型光譜分析儀器,它集信息採集,處理,存儲諸功能於一體。由於OMA不再使用感光乳膠,避免和省去了暗室處理以及之後的一系列繁瑣處理,測量工作,使傳統的光譜技術發生了根本的改變,大大改善了工作條件,提高了工作效率:使用OMA分析光譜,測盆准確迅速,方便,且靈敏度高,響應時間快,光譜解析度高,測量結果可立即從顯示屏上讀出或由列印機,繪圖儀輸出.目前,它己被廣泛使用於幾乎所有的光譜測量,分析及研究工作中,特別適應於對微弱信號,瞬變信號的檢測。
光譜分析儀的分析原理是將光源輻射出的待測元素的特徵光譜通過樣品的蒸汽中待測元素的基態原子所吸收,由發射光譜被減弱的程度,進而求得樣品中待測元素的含量,它符合郎珀-比爾定律 A= -lg I/I o= -LgT = KCL 式中I為透射光強度,I0為發射光強度,T為透射比,L為光通過原子化器光程由於L是不變值所以A=KC。
物理原理
任何元素的原子都是由原子核和繞核運動的電子組成的,原子核外電子按其能量的高低分層分布而形成不同的能級,因此,一個原子核可以具有多種能級狀態。
能量最低的能級狀態稱為基態能級(E0=0),其餘能級稱為激發態能級,而能最低的激發態則稱為第一激發態。正常情況下,原子處於基態,核外電子在各自能量最低的軌道上運動。
如果將一定外界能量如光能提供給該基態原子,當外界光能量E恰好等於該基態原子中基態和某一較高能級之間的能級差E時,該原子將吸收這一特徵波長的光,外層電子由基態躍遷到相應的激發態,而產生原子吸收光譜。
電子躍遷到較高能級以後處於激發態,但激發態電子是不穩定的,大約經過10^-8秒以後,激發態電子將返回基態或其它較低能級,並將電子躍遷時所吸收的能量以光的形式釋放出去,這個過程稱原子發射光譜。可見原子吸收光譜過程吸收輻射能量,而原子發射光譜過程則釋放輻射能量。
② 光柵的特性分析與應用怎麼讀數
從零級譜線左側起沿一個方向向右移動望遠鏡,使望遠鏡縱向叉絲依次與左第二級、第一級衍射光譜中某譜線相重合,記下對應位置的讀數.繼續移動望遠鏡,依次記錄右側各級譜線對應位置讀數。
在使用分光計觀察光柵衍射光譜的時候,如果光柵的刻痕與分光計中心轉軸不平行,就會出現透射光柵兩側的衍射光譜線不等高的現象。甚至有可能,有些位置的光譜會跑出屏的范圍,不在屏上出現。
資料拓展
透射光柵是在光學玻璃片上刻劃大量相互平行、寬度和間距相等的刻痕而製成的。當光照射在光柵面上時,刻痕處由於散射不易透光,光線只能在刻痕間的狹縫中通過。
因此光柵實際上是一排密集、均勻而又平行的狹縫。若以單色平行光垂直照射在光柵面上,則透過各狹縫的光線因衍射將向各個方向傳播,經透鏡會聚後相互干涉,並在透鏡焦平面上形成一系列被相當寬的暗區隔開的、間距不同的明條紋,因此光柵的衍射條紋是光的衍射和干涉的綜合效果。
③ 光纖光柵的工作原理
光纖光柵是利用光纖的光敏性在紫外光照射下產生光致折射率變化,在纖芯上形成周期性的折射率分布,從而可以對入射光中相位匹配的頻率產生相干反射,形成中心反射峰。根據耦合模理論,寬頻光在光纖Bragg光柵中傳輸時,會產生模式耦合,由光纖光柵的布拉格方程可知其中心波長λB可表示為[13-14]:
(1)
式中,λB為FBG的中心波長,也就是反射波的波長;Λ為光柵周期;neff為纖芯的有效折射率。
希望有幫助啊
④ 光譜儀器用於定性分析的幾種方法
資料介紹光譜儀器的定性分析是指:由於各種元素的原子結構不同,在光源的作用下都可以產生自己特徵的光譜。如果一個樣品經過激發攝譜在感光板上有幾種元素的譜線出現,就證明該樣品中有這幾種元素。這樣的分析方法就叫做光譜定性分析方法。光譜儀器用於定性分析方法有以下幾種:1.比較光譜分析法:這種方法應用比較廣泛,它包括標准試樣比較法和鐵譜比較法。標准樣品比較法一般適用於單項定性分析及有限分析。鐵譜比較法它不但可以做單項測定還便於做全分析。2.譜線波長測量法:光譜分析儀器利用譜線波長測量法進行定性分析是先測出某一譜線的波長,再查表確定存在的元素,這種方法在日常分析中很少使用,一般只是在編制譜圖或者做仲裁分析時才用。
一般來講光譜分析儀器定性分析可以分析元素周期表上的70幾個元素,但由於受到儀器和光源條件的限制有些元素如非金屬及鹵族元素等則需要在特殊的條件下才能測定。光譜儀器定性分析的樣品可以是多種多樣的,所以光譜定性採用的方法各不相同,對於易導電的金屬試樣可以將試樣本身作為電極直接用直流電孤或交流電孤光源分析。有時為了不損壞試樣也可以採用火花和激光顯微光源分析。對於有機物一般先進行化學處理,使之轉化成溶液用溶液殘渣法測定,也可以灼燒、灰化將試樣處理成均勻的粉末裝在碳電極孔中用直流電孤或交流電孤光源分析測定。光譜儀器定性分析的特點是方法簡單、速度快、需要樣品量少並且任何形式的樣品都可以分析。對於大部份元素都有比較高的靈敏度。光譜定性分析可以分析試樣中一個或幾個指定元素,也可以全分析試樣中所有可能存在的元素。根據靈敏線的強弱來判斷它們在試樣中的大致含量。光譜定性分析只能給出試樣中存在元素、的粗略含量范圍,如大量、少量,還是微量。要想得到元素的正確含量就必須做光譜定量分析。
⑤ 光柵光譜與棱鏡光譜有什麼不同
它們光譜主要區別是:
1、光柵光譜是一個均勻排列光譜,棱鏡光譜是一個非均勻排列的光譜。
2、光柵光譜中個譜線排列是由紫到紅,棱鏡光譜中各譜線排列是由紅到紫。
3、光柵光譜有級,級與級之間有重疊現象,棱鏡光譜不存在這種情況。
4、分光原理不同,光柵光譜是衍射光譜,棱鏡光譜是這是光譜。
⑥ 非均勻光纖光柵相對於均勻,優點在哪裡
非均勻光柵可以讓反射普的寬度增大,所以在應用上可以用於色散補償,也就是樓上說的壓縮,展寬光脈沖,另外可以製作寬光譜器件,比如增益平坦濾波器,波分復用器件等等,均勻光柵也就是常說的布拉格光柵,帶寬小,用作感測器件是可以得到較高的分辨能力,或者用於光纖激光器的波長鎖定等等。
⑦ 光柵的光柵光譜
由光柵方程d(sinα±sinβ)=mλ可知,在衍射角不太大的情況下(如在一級光譜內,靠近光譜法線區域時),不同波長光譜線的位置基本上與其波長值成比例。因此,光柵光譜中的各個波長譜線排列比較均勻,並隨著波長值線性增加或減少,相應的光柵光譜線的位置(如離光柵法線的距離)也線性變化。
在棱鏡光譜中,由於不同波長的光線受到不同程度的折射而被色散。而棱鏡材料對不同波長的折射率變化是不與波長成線性的。棱鏡材料在短波方向的折射率的變化要比長波區的變化大得多。因此,棱鏡光譜中的譜線排列情況是不均勻的。在短波區,因dn/dλ大,譜線排列非常稀疏,而在長波區,則因dn/dλ小,譜線排列非常稠密。所以,同樣大小的波長差值,相應的譜線之間的距離,短波處要大於長波處。因此,我們說棱鏡在紫外區的色散要比可見、近紅外區的色散大。所以,有些紫外可見分光光度計(特別是高檔紫外可見分光光度計)都用石英棱鏡作前置單色器,就是這個道理。
光柵光譜的排列比較均勻,不同波長區中同樣波長差的兩根譜線之間的距離變化不太大。光柵光譜的勻排性不但使光譜更加整齊、勻稱,而且對定性分析時初步判斷、估計譜線的波長值等比較方便。
此外,在譜線的波長分布順序方面,光柵與棱鏡也是不同的;在光柵光譜中,波長越長的光線衍射角數值越大,譜線越偏離光柵法線。在棱鏡光譜中,波長越長的光線,偏向角越小,相應的譜線分布越接近入射角方向的位置。 經棱鏡色散後形成的光譜,只是按波長次序排列成一個單一的光譜。而經衍射角光柵色散後形成的光譜,則是包含m=0,±1,±2,±3……所有級次光譜的總和。同一塊光柵對同一束入射復合光可在不同位置形成一系列不同級次的光譜;在m=0兩側有對稱分布的正級次光譜和負級次光譜。因此,光柵光譜的多級次性是原理性的、是本質的,是不可避免的。光柵的這個特性,將對光柵的應用產生許多相應的問題,它會直接對紫外可見分光光度計的光譜解析度和光譜的檢測造成困難,這是所有紫外可見分光光度計的設計者、製造者、使用者必須重視的問題。
⑧ 光纖光柵的主要分類
隨著光纖光柵應用范圍的日益擴大,光纖光柵的種類也日趨增多。根據折射率沿光柵軸向分布的形式,可將紫外寫入的光纖光柵分為均勻光纖光柵和非均勻光纖光柵。其中均勻光纖光柵是指纖芯折射率變化幅度和折射率變化的周期(也稱光纖光柵的周期)均沿光纖軸向保持不變的光纖光柵,如均勻光纖Bragg光柵(折射率變化的周期一般為0.1um量級)和均勻長周期光纖光柵(折射率變化的周期一般為100um量級);非均勻光纖光柵是指纖芯折射率變化幅度或折射率變化的周期沿光纖軸向變化的光纖光柵,如chirped光纖光柵(其周期一般與光纖Bragg光柵周期處同一量級)、切趾光纖光柵、相移光纖光柵和取樣光纖光柵等。
均勻光纖光柵
均勻光纖Bragg光柵折射率變化的周期一般為0.1um量級。它可將入射光中某一確定波長的光反射,反射帶寬窄。在感測器領域,均勻光纖Bragg光柵可用於製作溫度感測器、應變感測器等感測器;在光通信領域,均勻光纖Bragg光柵可用於製作帶通濾波器、分插復用器和波分復用器的解復用器等器件。
均勻長周期光纖光柵
均勻長周期光纖光柵折射率變化的周期一般為100um量級,它能將一定波長范圍內入射光前向傳播芯內導模耦合到包層模並損耗掉。在感測器領域,長周期光纖光柵可用於製作微彎感測器、折射率感測器等感測器;在光通信領域,長周期光纖光柵可用於製作摻餌光纖放大器、增益平坦器、模式轉換器、帶阻濾波器等器件。
切趾光纖光柵
對於一定長度的均勻光纖Bragg光柵,其反射譜中主峰的兩側伴隨有一系列的側峰,一般稱這些側峰為光柵的邊模。如將光柵應用於一些對邊模的抑制比要求較高的器件如密集波分復用器,這些側峰的存在是一個不良的因素,它嚴重影響器件的信道隔離度。為減小光柵邊模,人們提出了一種行之有效的辦法一切趾所謂切趾,就是用一些特定的函數對光纖光柵的折射率調制幅度進行調制。經切趾後的光纖光柵稱為切趾光纖光柵,它反射譜中的邊模明顯降低。
相移光纖光柵
相移光纖光柵是由多段m(M>2)具有不同長度的均勻光纖Bragg光柵以及連接這些光柵的M-1個連接區域組成.相移光纖光柵因為在其反射譜中存在一透射窗口可直接用作帶通濾波器。
取樣光纖光柵
取樣光纖光柵也稱超結構光纖光柵,它是由多段具有相同參數的光纖光柵以相同的間距級聯成。除了用作梳狀濾波器之外,取樣光纖光柵還可用wdm系統中的分插復用器件。與其他分插復用器件不同的是,取樣光纖光柵構成的分插器件
可同時分或插多路信道間隔相同的信號。
chirped光纖光柵
所謂chirped光纖光柵,是指光纖的纖芯折射率變化幅度或折射率變化的周期沿光纖軸向逐漸變大(小)形成的一種光纖光柵。在chirped光纖光柵軸向不同位置可反射不同波長的入射光。所以chirped光纖光柵的特點是反射譜寬,在反射帶寬內具有漸變的群時延,群時延曲線的斜率即光纖光柵的色散值。所以,可以利用chirped光纖光柵作為色散補償器。