導航:首頁 > 研究方法 > 分析判斷方法的目的

分析判斷方法的目的

發布時間:2023-01-30 15:33:17

1. 多元統計分析概述

後期會把每一章的學習筆記鏈接加上

多元統計分析 是研究多個隨機變數之間相互依賴關系及其內在統計規律的一門學科

在統計學的基本內容匯總,只考慮一個或幾個因素對一個觀測指標(變數)的影響大小的問題,稱為 一元統計分析

若考慮一個或幾個因素對兩個或兩個以上觀測指標(變數)的影響大小的問題,或者多個觀測指標(變數)的相互依賴關系,既稱為 多元統計分析

有兩大類,包括:

將數據歸類,找出他們之間的聯系和內在規律。

構造分類模型一般採用 聚類分析 判別分析 技術

在眾多因素中找出各個變數中最佳的子集合,根據子集合所包含的信心描述多元系統的結果及各個因子對系統的影響,舍棄次要因素,以簡化系統結構,認識系統的內核(有點做單細胞降維的意思)

可採用 主成分分析 因子分析 對應分析 等方法。

多元統計分析的內容主要有: 多元數據圖示法 多元線性相關 回歸分析 判別分析 聚類分析 主成分分析 因子分析 對應分析 典型相關分析 等。

多元數據是指具有多個變數的數據。如果將每個變數看作一個隨機向量的話,多個變數形成的數據集將是一個隨機矩陣,所以多元數據的基本表現形式是一個矩陣。對這些數據矩陣進行數學表示是我們的首要任務。也就是說,多元數據的基本運算是矩陣運算,而R語言是一個優秀的矩陣運算語言,這也是我們應用它的一大優勢。

直觀分析即圖示法,是進行數據分析的重要輔助手段。例如,通過兩變數的散點圖可以考察異常的觀察值對樣本相關系數的影響,利用矩陣散點圖可以考察多元之間的關系,利用多元箱尾圖可以比較幾個變數的基本統計量的大小差別。

相關分析就是通過對大量數字資料的觀察,消除偶然因素的影響,探求現象之間相關關系的密切程度和表現形式。在經濟系統中,各個經濟變數常常存在內在的關系。例如,經濟增長與財政收人、人均收入與消費支出等。在這些關系中,有一些是嚴格的函數關系,這類關系可以用數學表達式表示出來。還有一些是非確定的關系,一個變數產生變動會影響其他變數,使其產生變化。這種變化具有隨機的特性,但是仍然遵循一定的規律。函數關系很容易解決,而那些非確定的關系,即相關關系,才是我們所關心的問題。

回歸分析研究的主要對象是客觀事物變數間的統計關系。它是建立在對客觀事物進行大量實驗和觀察的基礎上,用來尋找隱藏在看起來不確定的現象中的統計規律的方法。回歸分析不僅可以揭示自變數對因變數的影響大小,還可以用回歸方程進行預測和控制。回歸分析的主要研究范圍包括:

(1) 線性回歸模型: 一元線性回歸模型 多元線性回歸模型
(2) 回歸模型的診斷: 回歸模型基本假設的合理性,回歸方程擬合效果的判定,選擇回歸函數的形式。
(3) 廣義線性模型: 含定性變數的回歸 自變數含定性變數 因變數含定性變數
(4) 非線性回歸模型: 一元非線性回歸 多元非線性回歸

在實際研究中,經常遇到一個隨機變數隨一個或多個非隨機變數的變化而變化的情況,而這種變化關系明顯呈非線性。怎樣用一個較好的模型來表示,然後進行估計與預測,並對其非線性進行檢驗就成為--個重要的問題。在經濟預測中,常用多元回歸模型反映預測量與各因素之間的依賴關系,其中,線性回歸分析有著廣泛的應用。但客觀事物之間並不一定呈線性關系,在有些情況下,非線性回歸模型更為合適,只是建立起來較為困難。在實際的生產過程中,生產管理目標的參量與加工數量存在相關關系。隨著生產和加工數量的增加,生產管理目標的參量(如生產成本和生產工時等)大多不是簡單的線性增加,此時,需採用非線性回歸分析進行分析。

鑒於統計模型的多樣性和各種模型的適應性,針對因變數和解釋變數的取值性質,可將統計模型分為多種類型。通常將自變數為定性變數的線性模型稱為 一般線性模型 ,如實驗設計模型、方差分析模型; 將因變數為非正態分布的線性模型稱為 廣義線性模型 ,如 Logistic回歸模型 對數線性模型 Cox比例風險模型

1972年,Nelder對經典線性回歸模型作了進一步的推廣,建立了統一的理論和計算框架,對回歸模型在統計學中的應用產生了重要影響。這種新的線性回歸模型稱為廣義線性模型( generalized linear models,GLM)。

廣義線性模型是多元線性回歸模型的推廣,從另一個角度也可以看作是非線性模型的特例,它們具有--些共性,是其他非線性模型所不具備的。它與典型線性模型的區別是其隨機誤差的分布 不是正態分布 ,與非線性模型的最大區別則在於非線性模型沒有明確的隨機誤差分布假定,而廣義線性模型的 隨機誤差的分布是可以確定的 。廣義線性模型 不僅包括離散變數,也包括連續變數 。正態分布也被包括在指數分布族裡,該指數分布族包含描述發散狀況的參數,屬於雙參數指數分布族。

判別分析是多元統計分析中用於 判別樣本所屬類型 的一種統計分析方法。所謂判別分析法,是在已知的分類之下,一旦有新的樣品時,可以利用此法選定一個判別標准,以判定將該新樣品放置於哪個類別中。判別分析的目的是對已知分類的數據建立由數值指標構成的 分類規則 ,然後把這樣的規則應用到未知分類的樣品中去分類。例如,我們獲得了患胃炎的病人和健康人的一些化驗指標,就可以從這些化驗指標中發現兩類人的區別。把這種區別表示為一個判別公式,然後對那些被懷疑患胃炎的人就可以根據其化驗指標用判別公式來進行輔助診斷。

聚類分析是研究 物以類聚 的--種現代統計分析方法。過去人們主要靠經驗和專業知識作定性分類處理,很少利用數學方法,致使許多分類帶有主觀性和任意性,不能很好地揭示客觀事物內在的本質差別和聯系,特別是對於多因素、多指標的分類問題,定性分類更難以實現准確分類。為了克服定性分類的不足,多元統計分析逐漸被引人到數值分類學中,形成了聚類分析這個分支。

聚類分析是一種分類技術,與多元分析的其他方法相比,該方法較為粗糙,理論上還不完善,但應用方面取得了很大成功。 聚類分析 回歸分析 判別分析 一起被稱為多元分析的三個主要方法。

在實際問題中,研究多變數問題是經常遇到的,然而在多數情況下,不同變數之間有一定相關性,這必然增加了分析問題的復雜性。主成分分析就是一種 通過降維技術把多個指標化為少數幾個綜合指標 的統計分析方法。如何將具有錯綜復雜關系的指標綜合成幾個較少的成分,使之既有利於對問題進行分析和解釋,又便於抓住主要矛盾作出科學的評價,此時便可以用主成分分析方法。

因子分析是主成分分析的推廣,它也是一種把多個變數化為少數幾個綜合變數的多元分析方法,但其目的是 用有限個不可觀測的隱變數來解釋原變數之間的相關關系 。主成分分析通過線性組合將原變數綜合成幾個主成分,用較少的綜合指標來代替原來較多的指標(變數)。在多元分析中,變數間往往存在相關性,是什麼原因使變數間有關聯呢? 是否存在不能直接觀測到的但影響可觀測變數變化的公共因子呢?

因子分析就是尋找這些公共因子的統計分析方法,它是 在主成分的基礎上構築若干意義較為明確的公因子,以它們為框架分解原變數,以此考察原變數間的聯系與區別 。例如,在研究糕點行業的物價變動中,糕點行業品種繁多、多到幾百種甚至上千種,但無論哪種樣式的糕點,用料不外乎麵粉、食用油、糖等主要原料。那麼,麵粉、食用油、糖就是眾多糕點的公共因子,各種糕點的物價變動與麵粉、食用油、糖的物價變動密切相關,要了解或控制糕點行業的物價變動,只要抓住麵粉、食用油和糖的價格即可。

對應分析又稱為相應分析,由法國統計學家J.P.Beozecri於 1970年提出。對應分析是在因子分析基礎之上發展起來的一種多元統計方法,是Q型和R型因子分析的聯合應用。在經濟管理數據的統計分析中,經常要處理三種關系,即 樣品之間的關系(Q型關系)、變數間的關系(R型關系)以及樣品與變數之間的關系(對應型關系) 。例如,對某一行業所屬的企業進行經濟效益評價時,不僅要研究經濟效益指標間的關系,還要將企業按經濟效益的好壞進行分類,研究哪些企業與哪些經濟效益指標的關系更密切一些,為決策部門正確指導企業的生產經營活動提供更多的信息。這就需要有一種統計方法, 將企業(樣品〉和指標(變數)放在一起進行分析、分類、作圖,便於作經濟意義.上的解釋 。解決這類問題的統計方法就是對應分析。

在相關分析中,當考察的一組變數僅有兩個時,可用 簡單相關系數 來衡量它們;當考察的一組變數有多個時,可用 復相關系數 來衡量它們。大量的實際問題需要我們把指標之間的聯系擴展到兩組變數,即 兩組隨機變數之間的相互依賴關系 。典型相關分析就是用來解決此類問題的一種分析方法。它實際上是 利用主成分的思想來討論兩組隨機變數的相關性問題,把兩組變數間的相關性研究化為少數幾對變數之間的相關性研究,而且這少數幾對變數之間又是不相關的,以此來達到化簡復雜相關關系的目的

典型相關分析在經濟管理實證研究中有著廣泛的應用,因為許多經濟現象之間都是多個變數對多個變數的關系。例如,在研究通貨膨脹的成因時,可把幾個物價指數作為一組變數,把若干個影響物價變動的因素作為另一組變數,通過典型相關分析找出幾對主要綜合變數,結合典型相關系數對物價上漲及通貨膨脹的成因,給出較深刻的分析結果。

多維標度分析( multidimensional scaling,MDS)是 以空間分布的形式表現對象之間相似性或親疏關系 的一種多元數據分析方法。1958年,Torgerson 在其博士論文中首次正式提出這一方法。MDS分析多見於市場營銷,近年來在經濟管理領域的應用日趨增多,但國內在這方面的應用報道極少。多維標度法通過一系列技巧,使研究者識別構成受測者對樣品的評價基礎的關鍵維數。例如,多維標度法常用於市場研究中,以識別構成顧客對產品、服務或者公司的評價基礎的關鍵維數。其他的應用如比較自然屬性(比如食品口味或者不同的氣味),對政治候選人或事件的了解,甚至評估不同群體的文化差異。多維標度法 通過受測者所提供的對樣品的相似性或者偏好的判斷推導出內在的維數 。一旦有數據,多維標度法就可以用來分析:①評價樣品時受測者用什麼維數;②在特定情況下受測者可能使用多少維數;③每個維數的相對重要性如何;④如何獲得對樣品關聯的感性認識。

20世紀七八十年代,是現代科學評價蓬勃興起的年代,在此期間產生了很多種評價方法,如ELECTRE法、多維偏好分析的線性規劃法(LINMAP)、層次分析法(AHP)、數據包絡分析法(EDA)及逼近於理想解的排序法(TOPSIS)等,這些方法到現在已經發展得相對完善了,而且它們的應用也比較廣泛。

而我國現代科學評價的發展則是在20世紀八九十年代,對評價方法及其應用的研究也取得了很大的成效,把綜合評價方法應用到了國民經濟各個部門,如可持續發展綜合評價、小康評價體系、現代化指標體系及國際競爭力評價體系等。

多指標綜合評價方法具有以下特點: 包含若干個指標,分別說明被評價對象的不同方面 ;評價方法最終要 對被評價對象作出一個整體性的評判,用一個總指標來說明被評價對象的一般水平

目前常用的綜合評價方法較多, 如綜合評分法、綜合指數法、秩和比法、層次分析法、TOPSIS法、模糊綜合評判法、數據包絡分析法 等。

R -- 永遠滴神~

2. 敏感性分析法的目的

1、找出影響項目經濟效益變動的敏感性因素,分析敏感性因素變動的原因,並為進一步進行不確定性分析(如概率分析)提供依據;
2、研究不確定性因素變動如引起項目經濟效益值變動的范圍或極限值,分析判斷項目承擔風險的能力;
3、比較多方案的敏感性大小,以便在經濟效益值相似的情況下,從中選出不敏感的投資方案。

3. 三要素分析法的目的

能夠更好地說明生產能力利用程度和生產效率高低所導致的成本差異情況,並且有利於分清責任。三因素分析法是將固定製造費用成本差異分為固定製造費用耗費差異、固定製造費用效率差異和固定製造費用閑置能量差異三部分。固定製造費用成本差異的計算與二因素分析法相同,不同的是將「能量差異」進一步分解為兩部分:一部分是實際工時未達到預算工時而形成的閑置能量差異,說明企業生產能力的利用程度未達到計劃水平;另一部分是實際工時脫離標准工時而形成的效率差異,以便更進一步說明企業生產能力利用程度和生產效率高低。採用三差異分析法,能夠更好地說明生產能力利用程度和生產效率高低所導致的成本差異情況,並且有利於分清責任:能力差異的責任在於管理部門,效率差異的責任則往往在於生產部門。

4. 分析測試的目的是由具體工作人員確定的,對嗎

不對。
分析測試的目的都是為了獲得穩定、可靠和准確的數據,分析方法驗證也在其中起著極為重要的作用。
方法驗證得結果可以用於判斷分析結果的質量、可靠性和一致性。

5. 確定分析方法的依據是什麼

1、 明確工作分析的目的和意義:我們首要糾正的是明確工作分析目的,向員工宣傳並與其達成共識:工作分析是為了使現有的工作內容和工作要求更加明確合理,以便制定切合實際的管理制度和管理機制,調動員工的積極性。同時通過工作分析這一過程能夠有效幫助員工重新理解工作的價值和標准,能夠幫助員工提高工作效能。

2、 高層的支持和認可。在工作說明書編寫之前,要和公司的高層領導充分討論,正確定位工作說明書的編寫的意義和價值,並取得領導對工作分析的理解、支持和認同。確保項目實施過程中,高層領導能率先樹立崗位責任意識,對各項工作實行歸口管理,改變原來自由隨意的管理風格。

3、 加強工作分析小組的管理:我們在確定工作分析項目小組成員後,首先要對小組成員進行工作分析,明確各自的分工、流程、時間表和階段成果,並要求每個成員在工作中保留過程文檔。同時堅持每天開早會,反饋前一天的工作成效和當天的工作計劃。工作小組的負責人負責匯總小組成員每天的工作文檔,以應對中途發生人員調換情況,保證工作分析工作的有條不紊和信息來源的一致性。同時,每周工作小組最好有個項目交流會,以保持成員間的信息和經驗的共享,並不斷調整工作分析的方式與方法。

6. 分析和判斷有什麼本質區別

所謂價值判斷,即關於價值的判斷,是指某一特定的客體對特定的主體有無價值、有什麼價值、有多大價值的判斷。 所謂事實判斷,在法學上是用來指稱對客觀存在的法律原則、規則、制度等所進行的客觀分析與判斷。 大致說來,有關法學上價值判斷與事實判斷的區別,主要表現在以下幾個方面: 第一,判斷的取向不同。法律的價值判斷由於是作為主體的人所進行的相關判斷,因而它以主體為取向尺度,隨主體的不同而呈現出相關差異。但事實判斷則不然,它是以現存的法律制度作為判斷的取向的。簡單地說,事實判斷是為了得出法律制度的真實情況,如果該種判斷是正確的話,那麼它的結論就是不以人的意志為轉移的。 第二,判斷的維度不同。法律上的價值判斷,明顯地帶有個人的印記,具有很強的主觀性。相反,就法律上的事實判斷而言,其目的在於達到對現實法律的客觀認識,因而無論是認識的過程抑或是認識的結果,都應當盡可能地排除自己的情緒、情感、態度等主觀性因素對認識問題的介入,而盡可能地做到「情感中立」或「價值中立」。 第三,判斷的方法不同。法律上的進行的價值判斷是一種規范性判斷的方式,它關注法律應當是怎樣的,什麼樣的法律才符合人性和社會的終理想。但法律事實判斷則是一種描述性判斷,其任務主要在於客觀地確定現實法律制度的本來面目,是典型的「實然」判斷。 第四,判斷的真偽不同。法的價值判斷的真偽,取決於主、客體之間價值關系的契合程度。但事實判斷有同,事實判斷的真偽主要在於其與客體的真實情況是否符合。 就區分價值判斷與事實判斷的意義而言,主要在於:第一,有利於明確認識、評價法律的多維角度,從而拓寬法學研究與法律分析的視野。第二,有利於協調事實與價值之間的固有張力,從而使得法學研究能尋求事實與價值之間的固有平衡。

7. 現有一新發現的未知植物材料,請你對它進行細胞遺傳學分析。請簡要寫出你所採用的方法及分析的目的。

雜交,培育
首先判斷性狀,是要多對還是一對?植物大多不分雌雄,有兩性,雌雄等,此不作分析,之後兩植株雜交{先研究一對性狀},可得出是否為純種,之後再種子自交【純種情況下】,可得出顯隱性,若為雜合子,即可知顯隱【無中生有為音信】同種自交,若還有疑問,可及時解答

8. 刑事案件查案過程中,對案件性質的分析判斷目的是什麼

收集證據!

9. 請用最通俗的語言講述多元統計分析中各種分析方法的意義

回歸分析:確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法
方差分析:用於兩個及兩個以上樣本均數差別的顯著性檢驗,通過分析研究中不同來源的變異對總變異的貢獻大小,從而確定可控因素對研究結果影響力的大小。
相關分析:是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度,是研究隨機變數之間的相關關系的一種統計方法。相關分析與回歸分析在實際應用中有密切關系。然而在回歸分析中,所關心的是一個隨機變數Y對另一個(或一組)隨機變數X的依賴關系的函數形式。而在相關分析中 ,所討論的變數的地位一樣,分析側重於隨機變數之間的種種相關特徵。
判別分析:是按照一定的判別准則,建立一個或多個判別函數,用研究對象的大量資料確定判別函數中的待定系數,並計算判別指標,在氣候分類、農業區劃、土地類型劃分中有著廣泛的應用。
聚類分析:通過數據建模簡化數據的一種方法,聚類分析在電子商務中網站建設數據挖掘中也是很重要的一個方面,通過分組聚類出具有相似瀏覽行為的客戶,並分析客戶的共同特徵,可以更好的幫助電子商務的用戶了解自己的客戶,向客戶提供更合適的服務。
因子分析:基本目的就是用少數幾個因子去描述許多指標或因素之間的聯系,即將相關比較密切的幾個變數歸在同一類中,每一類變數就成為一個因子(之所以稱其為因子,是因為它是不可觀測的,即不是具體的變數),以較少的幾個因子反映原資料的大部分信息。運用這種研究技術,我們可以方便地找出影響消費者購買、消費以及滿意度的主要因素是哪些,以及它們的影響力(權重)運用這種研究技術,我們還可以為市場細分做前期分析。

暫時就只能這么多

10. 常用的主流數據統計分析方法:2.判別分析

a. 目的 :識別一個個體所屬類別
b. 適用 :被解釋對象是非度量變數(nonmetric),解釋變數是度量變數;分組類型2組以上,每組樣品>1。
c. 應用 :歸類、預測
d. 判別分析與聚類分析
i. 聚類分析前,我們並不知道應該分幾類,分類工作;
ii. 判別分析時,樣品的分類已事先確定,需要利用訓練樣 本建立判別准則,對新樣品所屬類別進行判定,歸類工作。

a. 假設1:每一個判別變數(解釋變數)不能是其他判別變數的線性組合。避免多重共線性問題。
b. 假設2:如果採用線性判別函數,還要求各組變數協方差矩陣相等----線性判別函數使用起來最方便、在實際 中使用最廣。
c. 假設3:各判別變數遵從多元正態分布,可精確的計算 顯著性檢驗值和歸屬概率,不然計算概率不準。

協方差相等/協方差不等

協方差相等/協方差不等

優點

i. 距離判別只要求知道總體的特徵量(即參數)---均值和協差陣,不涉及總體的分布類型.
ii. 當參數未知時,就用樣本均值和 樣本協差陣來估計.
iii. 距離判別方法簡單,結論明確,是很實用的方法.

ii. 缺點
i. 該判別法與各總體出現的機會大小(先驗概率)完全無關
ii. 判別方法沒有考慮錯判造成的損失,這是不合理的.

v. 貝葉斯判別 的基本思想

i. 假定對研究對象已經有了一定的認識,這種認識可以用 先驗概率 來描述,當取得樣本後,就可以利用 樣本來修正 已有的 先驗概率分布,得到 後驗概率 分布,再通過後驗概率分布進 行各種統計推斷。
ii. 貝葉斯判別屬於 概率判別法。

iii. 判別准則:
i. 個體歸屬某類的概率(後驗概率)最大
ii. 錯判總平均損失最小為標准。
vi. 貝葉斯判別的後驗概率最大

i. 貝葉斯(Bayes)判別要變數服從 正態分布 類型。
ii. 、貝葉斯(Bayes)判別的判別准則是以個體歸屬某類的概率最大或 錯判總平均損失 最小為標准。彌補了 距離判別和費歇(Fisher)判別的缺點。

5.1費歇(Fisher)判別核心思想
i. 通過多維數據投影到一維度直線上,將k組m維數據投影到 某一個方向,使得投影後組與組之間盡可能地分開。而衡量組 與組之間是否分開的方法藉助於一元方差分析的思想
ii. 費歇(Fisher)判別是一種確定性判別。

5.2費歇(Fisher)判別小結
i. 費歇(Fisher)判別對判別變數的分布類型並無要求, 而貝葉斯(Bayes)判別要變數服從正態分布類型。因此, Fisher類判別較Bayes類判別簡單一些。
ii. 當兩個總體時,若它們的協方差矩陣相同,則距離判 別和Fisher判別等價。 當變數服從正態分布時,它們還 和Bayes判別等價。
iii. 與距離判別一樣,費歇判別與各總體出現的機會大小 (先驗概率)完全無關;也沒有考慮錯判造成的損失。

如何從m個變數中挑選出對區分k個總體有顯 著判別能力的變數,來建立判別函數,用以判別歸類。

1.忽略主要的指標;

凡是具有篩選變數能力的判別方法統稱為逐步判別法。

i. 保留判別能力顯著的變數
ii. 剔除判別能力不顯著的變數

i. 逐步篩選變數
i. 根據各變數對區分k個總體的判別能力的大小,利用向 前選入、向後剔除或逐步篩選的方法來選擇區分k個總體的 最佳變數子集。
ii. 判別歸類
i. 對已選出變數子集,使用三大判別方法(距離判別、 Bayes判別、Fisher判別)對樣品進行判別歸類。

閱讀全文

與分析判斷方法的目的相關的資料

熱點內容
水準計算方法定義 瀏覽:203
如何排肺毒最有效的方法 瀏覽:480
跨欄跑過欄技術實踐教學方法 瀏覽:473
怎麼殺老甲魚最有效方法 瀏覽:672
怎樣快速通便拉得又多土方法 瀏覽:84
藍凈靈的使用方法 瀏覽:335
廣東pvc木飾面安裝方法 瀏覽:183
公司管理方法叫什麼 瀏覽:14
鑒別紅薯最好的方法 瀏覽:877
4g手機電話轉移在哪裡設置方法 瀏覽:428
禁食水的正確使用方法 瀏覽:436
水泥膨脹劑的使用方法 瀏覽:465
怎麼教股票開盤方法 瀏覽:674
582減198簡便方法 瀏覽:432
問題要有解決方法的名言 瀏覽:545
剩米飯和豆皮怎麼做好吃簡單方法 瀏覽:179
口才訓練16種方法 瀏覽:653
帶圓弧角正方形的周長尺寸計算方法 瀏覽:286
環境空氣中乙酸乙酯的檢測方法 瀏覽:105
兒童跳高鍛煉方法視頻 瀏覽:741