Ⅰ 六年級數學上冊倒數的認識教學設計
這部分內容是在學習了分數乘法的基礎上教學的,主要為後面學習分數除法做准備,因為一個數除以分數的計算方法,歸結為乘這個數的倒數。
這部分內容安排了2個例題,教學倒數的意義和求倒數的方法。
1. 例1。
讓學生了解倒數的意義,編排了幾組乘積為1的乘法算式,通過學生觀察、討論等活動,找出它們的共同特點,導出倒數的定義。
教學建議
(1)要讓學生充分觀察和討論,找出算式的共同特點。
(2)給出倒數的定義後,結合定義討論倒數的特點,特別要理解「互為倒數」的含義,即倒數是表示兩個數之間的關系,這兩個數是相互依存的,倒數不能單獨存在。也可以結合判斷題,如「73是倒數」對不對?以加深學生認識。
(3)可以讓學生根據對倒數意義的理解,說出幾組倒數,看學生是否真正理解和掌握。
2. 例2。
這里是一個圖片教學求倒數的方法。教材先安排找倒數的活動,從而初步體驗找倒數的方法。接著總結求倒數的方法,分兩種情況。求分數的倒數是交換分數的 分子、分母的位置;求整數的倒數是把整數看作分子是1的分數,再交換分子和分母的位置。最後提出1和0的倒數的問題,讓學生思考討論得到結論。
教學建議
(1)通過找倒數的活動,交流探討方法。
(2)結合教材給出的數據,討論歸納方法。如35怎樣找到它的倒數?6怎樣找到它的倒數?
(3)把互為倒數的數提出來,還剩下1和0。提出問題:它們有沒有倒數?倒數是多少?組織學生討論,說出理由。在討論的基礎上歸納:根據倒數的意義,因為1×1=1,所以1的倒數是1;因為0與任何數相乘都是0,所以0沒有倒數。
(4)完成「做一做」,檢查對倒數意義的理解和求倒數方法的掌握。
3. 關於練習六的一些習題的說明和教學建議。
第2題是一個活動,可以同桌互說,一個人說出一個數,另一個人說出它的倒數,再交換說。
第3題通過判斷對錯的活動,加深對倒數的認識。
第(1)題,依據倒數的意義進行判斷,是對的。
第(2)題,兩個數互為倒數,而不是三個數,所以不對。
第(3)題,0沒有倒數,所以不對。
第(4)題,不一定。大於1的假分數的倒數一定比這個假分數小,而真分數的倒數比這個真分數大。
整理與復習
對本單元的學習內容進行整理與復習。分為兩個部分,第一部分以知識整理的形式回顧本單元的主要學習內容,引導復習;第二部分安排練習。
具體內容的說明和教學建議
復習部分
第1題,復習分數乘法的計算方法,呈現分數乘整數、整數乘分數和分數乘分數三道題。可以先由學生獨立完成,再說說每道題的計算方法,回憶總結分數乘法的計算方法。做錯的找一找錯在哪裡,然後完成練習七的第1、2、3題。
第2題,運用乘法運算定律進行簡便計算。可讓學生先獨立完成,再說說運用了什麼運算定律。然後完成練習七的第4題。
第3題,解決問題。第(1)題,求一個數的幾分之幾是多少的問題。可讓學生畫線段圖表示數量關系,列式解答,再說說解答的思路。第(2)題是稍復雜的 求一個數的幾分之幾是多少的問題,也先要求學生畫出線段圖表示題意,再列式解答,並交流有什麼不同的方法,是怎樣想的。然後完成練習七的第5、6題。
第4題,先說說什麼叫倒數,再找出各個數的倒數,並說說找的方法。然後完成練習七的第7題。
教學目的:
1.使學生感知倒數的意義,掌握求倒數的方法,學會對倒數的正確表述。
2.培養學生的觀察能力、數學語言表達能力、發現規律的能力等。
教學重點:
求一個數的倒數的方法。
教學難點:
理解倒數的意義,掌握求一個數的倒數的方法。
教學准備 :
教學光碟
課前研究 :
自學課本P50:
(1)什麼是倒數?倒數的概念中哪幾個字比較重要?說一說你是怎麼理解的。
(2)觀察互為倒數的兩個數,說說他們分子、分母的位置發生了什麼變化?
(3)0有倒數嗎?為什麼?
教學過程:
一、作業錯例分析。
二、學習分數的倒數:
1.出示例7
學生在自備本上完成,指名核對。
教師板書: ×=1× =1× =1
2.你能模仿著再舉幾個例子嗎?
學生回答,教師板書。
3.觀察板書,揭示倒數意義:乘積是1的兩個數互為倒數。(板書)
和 互為倒數,也可以說的倒數是 ,的倒數是。
讓學生模仿著說另外兩個算式,誰和誰互為倒數?誰是誰的倒數?
4.你能分別找出和的倒數嗎?
學生同桌討論找法,指名交流。
5.觀察上面互為倒數的兩個數,學生討論怎樣求一個分數的倒數?
指名交流方法:求一個分數的倒數時,只要把它的分子、分母調換位置就可以了。
6.合作練習:同桌兩位同學一位說出一個分數,請另一位同學說這個分數的倒數,並交換練習。
三、學習整數的倒數:
1.電腦出示:5的倒數是多少?1的倒數呢?
學生跟自己的同桌說一說,再指名交流。
方法一:求5的倒數時,可以先把5看作,所以它的倒數是;
方法二:想5×( )=1,再得出結果。
2.那1的倒數是多少?(1)
3.0有倒數嗎?為什麼?(沒有一個數與零相乘的積是1,所以0沒有倒數)
4. 分數和整數(0除外)都有它的倒數,小數有沒有倒數?你能發表自己的觀點嗎?
0.25 0.1 的倒數是多少?如何求的?
5.練一練 示範寫 的倒數: 的倒數是 ,明確不能寫成 =。
學生獨立完成,集體核對。
四、鞏固練習:
1.練習十第1題
學生獨立完成後集體訂正,說說思路及倒數的意義和求倒數的方法
2.練習十第2題
學生先獨立找一找,再交流想法,注意說完整話。例:與4互為倒數。
3.練習十第3題
學生獨立填空後集體訂正。
4.練習十第4題
寫出每組數的倒數。說說有什麼發現?
第1組中都是真分數,倒數都是大於1的假分數。
第2組中都是大於1的假分數,倒數都是真分數。
第3組中都是一個分數的分數單位,倒數都是整數。
第4組中都是非0的自然數,倒數都是幾分之一。
5.練習十第5題:
學生獨立完成。說說怎樣求正方體的表面積和體積。
6.練習十第6題
學生獨立列式解答後,辨析。
兩題中分數的不同意義:
第一題中的表示兩個數量間的倍比關系,要用乘法計算。
第二題中的表示用去的噸數,求還剩多少噸,要用減法計算。
7.思考題
學生小組討論,指名交流。
按鋼管的長度分三種情況考慮:
(1)如果鋼管的長度都是1米,那麼兩根鋼管用去的一樣多;
(2)如果鋼管的長度小於1米,那麼第一根用去的長度長一些;
(3)如果鋼管的長度大於1米,那麼第二根用去的長度長一些。
五、課堂總結:
今天我們學習了兩個數之間的一種新的關系——倒數關系,誰再來說一說倒數是怎樣定義的?怎樣求一個數的倒數?1的倒數是多少?0有沒有倒數?
教材分析:
這部分內容是在學歷了分數乘法的基礎上教學的,主要為後面學習分數除法做准備,因為一個數除以分數的計算方法,歸結為乘這個數的倒數。這部分內容通過兩個例題,主要教學倒數的意義和求倒數的方法。
設計理念:
本課強調從學生的學習興趣,生活經驗和認知水平出發,通過體驗、實踐、參與、交流和合作方式,讓學生在合作學習的過程中,學會交流,相互評價,親歷知識的建構過程。在求一個數的倒數時,讓學生先學後教,激發學習熱情,並培養學生觀察、歸納、推理和概括的能力。
教學目標:
使學生通過探究活動,認識倒數的意義,掌握找倒數的方法。
能力目標:
培養學生觀察、歸納、猜想、推理和概括的能力。
情感目標:
提供適當的問題情境,激發學生的學習興趣和學習熱情。讓學生體驗探索中成功的快樂,培養學生的創新意識和科學精神。
教學重點:
使學生通過探究活動,認識倒數的意義,掌握找倒數的`方法。
教學難點:
使學生通過探究活動,認識倒數的意義,掌握找倒數的方法。
教學過程:
一、課前談話突破難點
1、談話——蘊含「兩個」,突破「互為」
師:老師也願和六(1)班的同學成為朋友,你們願意嗎?(願意)那老師就是你們的…(朋友),你們是老師的…(朋友)。你們和老師互為朋友。(指板書:互為)
二、導入揭題,引導質疑
師:其實在我們的數學中也有類似的情況。今天這節課就讓我們一起來發現數學中的類似問題。揭題——(板書:倒數的認識)
師:看到「倒數」這個數學新名詞,你的腦子里產生哪些問題。
預設:什麼是倒數?怎樣求倒數?……
這節課一起來探究這些問題?
三、創設活動情景,理解概念——「倒數是什麼」
師:我們剛剛研究了分數乘法,老師想了解大家掌握的怎麼樣?請看計算。
1、在分類中理解「是什麼」
①5/8×8/5②0。25×4③3/4+1/4
④1。6—3/5⑤13/7×7/13⑥3/2×6/5×5/9
計算後你有什麼發現?
師:如果請你將這六個算式分成兩類,你准備怎麼分?
(學生匯報:乘積是1。)[適當處板書:乘積是1]
歸納總結:分類的標准不同,得到的答案也不同,今天我們就研究這一類的算式。
師:這三個算式有什麼共同的特徵嗎?
預設:乘積是1。
2、舉例感悟「怎麼做」
師:你還能舉出這樣的例子嗎?
還能舉出與這些算式不同的例子嗎?還能舉出不同的算式嗎?
歸納總結:像剛才舉的這些例子,他們都有一個共同的特點!(乘積是1)在數學上「乘積是1的兩個數互為倒數」。如5/8×8/5=1,我們就可以說5/8和8/5互為倒數,還可以怎麼說?如我們表述朋友的關系。
5/8倒數是8/5,8/5倒數是5/8。
師:同學們說得很好。倒數是表示兩個數之間的關系,它們是相互依存的,所以必須說清一個數是另一個數的倒數,而不能孤立地說某一個數是倒數。
②0。25×4這兩個數的關系可以怎麼說?請您告訴你的同桌。
(學生活動)
⑤13/7×7/13
3、在思辨中深入理解
師:能說3/4和1/4互為倒數嗎?為什麼?
師:能說3/2、6/5和5/9互為倒數嗎?為什麼?
四、運用概念,探究方法——「怎樣求倒數」
過渡:大家對倒數理解的很不錯,那麼我給你一個數你能找出它的倒數嗎?
(投影,出示例2)
1、求下面各數的倒數
3/5267/20/610/250
學生嘗試。
回報交流。
師:這組數中,你最喜歡求哪些數的倒數?為什麼?
預設:
生1:我最喜歡求分數的倒數,因為把分數的分子、分母調換位置,它們的乘積就是1。很容易,所以我喜歡求。
生2:我最喜歡求1的倒數,因為1的倒數可以寫成分數,分子、分母調換位置還是,1的倒數就是1。很有趣,所以我喜歡求1的倒數。生:進行計算。
師:這組數中,你最不喜歡哪個數的倒數?
預設:
生1:我最不喜歡求0的倒數,因為0如果寫成分數,要是調換分子、分母的位置就是,0不能作分母(0不能作除數)。0好像沒有倒數。
生2:再說0乘任何數都等於0,也不等於1呀,0肯定沒有倒數。
師:那你是怎樣求26的倒數的呢?
你是怎樣求一個小數的倒數的呢?
歸納總結:我們求了這么多數的倒數,誰來總結一下求一個數的倒數的方法。
生1:求一個數的倒數,只要把分子分母調換位置。
2、強調書寫格式
師:剛才老師看到有學生是這樣寫的,可以嗎?(3/5=5/3)
歸納總結:互為倒數的兩個數是不會相等的(1除外)。我們在書寫時要寫清誰是誰的倒數,或誰的倒數是誰,如老師黑板上寫的一樣。
先說說下面每組數的倒數,再看看你能發現什麼?
(1)3/4的倒數是()(2)9/7的倒數是()
2/5的倒數是()10/3的倒數是()
4/7的倒數是()6/5的倒數是()
(3)1/3的倒數是()(4)3的倒數是()
1/10的倒數是()9的倒數是()
1/13的倒數是()14的倒數是()
由學生說出各數的倒數。
師:請你仔細觀察,看能從中發現什麼,發現得越多越好。
師:小組間可以先互相說一說。
匯報:
預設:
生1:我從第一組中發現真分數的倒數都是假分數。
生2:我從第二組中發現假分數的倒數是真分數或者假分數。
生3:真分數的倒數都小於1,假分數的倒數大於1。
3、填空:
7×()=15/2×()=()×0。25=0。17×()=1
教學目標:
1、 使學生通過探究活動,認識倒數的意義,掌握找倒數的方法。
2、 培養學生觀察、歸納、推理和概括的能力。
教學過程
一、創設活動情景,引入概念
出示例1的一組算式,開展小組活動:算一算,找一找,這組算式有什麼特點?
小組匯報交流。(通過計算,發現每組算式的乘積都是1。通過觀察發現相乘的兩個分數的分子和分母位置是顛倒的……)
師:同學們發現了每組算式兩個分數的分子與分母正好顛倒了位置,所以我們把這樣的兩個分數叫做「倒數」。
讓學生讀一讀:「倒數」。
出示倒數的意義:乘積是1的兩個數互為倒數。
二、探究討論,深入理解
讓學生說說對倒數意義的理解。
提問:「互為」是什麼意思?(倒數是指兩個數之間的關系,這兩個數相互依存,一個數不能叫倒數。)
判斷下面的句子錯在哪裡?應該怎樣敘述。
因為3/4×4/3=1,所以3/4是倒數,4/3也是倒數。
三、運用概念,探討方法
出示例2,找一找哪兩個數互為倒數?
匯報找的結果,並說說怎樣找的?
1、 看兩個分數的乘積是不是1;
2、 看兩個分數的分子與分母是否分別顛倒了位置。
討論一下這兩種方法哪一種方法比較快?(第二種方法,可以直接觀察得到。)
通過具體實例總結歸納找倒數的方法。
(1)找分數的倒數:交換分子與分母的位置。
例:
(2)找整數的倒數:先把整數看成分母是1的分數,再交換分子和分母的位置。
例:
四、出示特例,深入理解
看一看,例2中的哪些數據沒有找到倒數?(1,0)
提問:1和0有沒有倒數?如果有,是多少?
小組討論、匯報。
1、 關於1的倒數。
因為1×1=1,根據「乘積是1的兩個數互為倒數」,所以1的倒數是1。
也可以這樣推導:
1的倒數是1。
2、 關於0的倒數。
因為0與任何數相乘都不等於1,所以0沒有倒數。
也可以這樣推導:
分母不能為0,所以0沒有倒數。
五、鞏固練習
1、 完成「做一做」。先獨立做,再全班交流。
2、 練習六第3題。
用多媒體或投影逐題出示,學生判斷,並說明理由。
3、 同桌進行互說倒數活動(練習六第2題)。
六、總結
今天學習了什麼?
什麼叫倒數?怎樣找出一個數的倒數?
教學目標:
1、引導學生通過體驗、研究、類推等實踐活動,理解倒數的意義,讓學生經歷提出問題、自探問題、應用知識的過程,自主總結出求倒數的方法。
2、通過合作活動培養學生學會與人合作,願與人交流的習慣。
3、通過學生自行實施實踐方案,培養學生自主學習和發展創新的意識。
教學重點:
理解倒數的意義和怎樣求倒數。理解倒數的意義,掌握求倒數的方法。
教學難點 :
掌握求倒數的方法。
教具准備 :
多媒體課件。
教學過程 :
一、舊知鋪墊(課件出示)
1、口算:
(1)× × 6× ×40
(2)××3××80
2、今天我們一起來研究「倒數」,看看他們有什麼秘密?出示課題:倒數的認識
二、新授
1、課件出示知識目標:
(1)什麼叫倒數?怎樣理解「互為」?
(2)怎樣求一個數的倒數?
(3)0、1有倒數嗎?是什麼?
2、教學倒數的意義。
(1)學生看書自學,組成研討小組進行研究,然後向全班匯報。
(2)學生匯報研究的結果:乘積是1的兩個數互為倒數。
(3)提示學生說清「互為」是什麼意思?(倒數是指兩個數之間的關系,這兩個數相互依存,一個數不能叫倒數)
(3)互為倒數的兩個數有什麼特點?(兩個數的分子、分母正好顛倒了位置)
3、教學求倒數的方法。
(1)寫出的倒數:求一個分數的倒數,只要把分子(數字3閃爍後移至所求分數分母位置處)、分母(數字5閃爍後移至所求分數分子位置處)調換位置。
(2)寫出6的倒數:先把整數看成分母是1的分數,再交換分子和分母的位置。
4、教學特例,深入理解
(1)1有沒有倒數?怎麼理解?(因為1×1=1,根據「乘積是1的兩個數互為倒數」,所以1的倒數是1。)
(2)0有沒有倒數?為什麼?(因為0與任何數相乘都不等於1,所以0沒有倒數)
5、同桌互說倒數,教師巡視。
三、當堂測評
1、練習六第2題:
2、辨析練習:練習六第3題「判斷題」。
3、開放性訓練。
3/5×( )=( )×4/7=( )×5=1/3×( )=1
四、課堂總結
你已經知道了關於「倒數」的哪些知識?
你聯想到什麼?
還想知道什麼?
設計意圖
倒數的認識一課,教學內容較為簡單,學生通過預習、自學,完全可以自行理解本課的內容。針對本課的特點,教學中我放手給學生,讓學生通過自學、討論理解「倒數」的意義,而在這其中,有一些概念點猶為關鍵,如「互為」,因此我也適當的加以提問點撥。對於求倒數的方法,我同樣給學生自主的空間,自學例題,按自己的理解、用自己的話概括出求一個數的倒數的方法。但對於「0」「1」的倒數這種特例,我並沒有忽視它,而是充分發揮教師「導」的作用,幫助學生加強認識。
教學後記
第十一、十二課時:整理和復習
Ⅱ 倒數的教學過程
《倒數的認識》教學設計
學習目標:
1、理解倒數的意義,掌握求一個數倒數的方法,能准確熟練地寫出一個數的倒數。
2、通過獨立思考、小組合作、展示質疑,在探索活動中,培養觀察、歸納、推理和概括能力。
3、激情投入,挑戰自我。
教學重點:求一個數倒數的方法。
教學難點:1和0倒數的問題。
教學過程:
離上課還有一點時間,咱們先聊一會吧。同學們,我給你們代數學課多長時間了?(一年)一年時間雖然不是很長,但我覺得我們之間已經互相成為了朋友,你有這種感覺嗎?該怎樣表述我們之間的朋友關系呢?(你是我的朋友,我是你的朋友,互相應該是雙方面的。)就先聊到這兒吧?好,上課!
一、導入:
同學們,在上數學課之前,老師想考你們一個語文知識,怎麼樣?(出示「杏」和「呆」)看到這兩個字,你發現了什麼?
生:上下兩部分調換了位置,變成了另一個字。
師:對了,把其中任一個字上下兩部分倒過來,就變成了另一個字,這個現象很有趣很奇妙吧!
師小結:這種奇妙有趣的現象不僅出現在語文中,其實在數學中也存在著,想了解嗎?今天我們就一起揭秘這種現象,好吧?
二、合作探究:
(一)揭示倒數的意義
1.(出示例題課件)請看大屏幕,先計算,再觀察這些算式,同桌互相說一說它們有什麼規律?(學生自學,經歷自主探索總結的過程,並獨立完成)。
請同學們按照要求逐一完成,看誰是認真仔細的人,既能准確的計算,又能發現其中的秘密。
師:同學們,在以前我們看來非常簡單的乘積是1的兩個數,研究起來有如此大的發現,那麼,像符合這種規律的兩個數叫什麼數呢?誰能給這種數取個名字?(生取名字)
師:那麼根據剛才的計算結果與發現的規律你能說出什麼叫倒數嗎?(生答)
師板書:乘積是1的兩個數互為倒數。
你認為哪些字或詞比較重要?你是如何理解「互為」的?你能用舉例子的方法來說明嗎?(生答)
師小結:剛才我們認識了倒數的意義,知道乘積是1的兩個數互為倒數,而且倒數不能單獨存在,是相互依存的。就像課前我們聊得話題,老師和你互相成為了好朋友,就是說「老師是你的朋友」,「你是老師的朋友」,我們倆是雙方面的。
(二)小組探究求一個倒數的方法
1.出示例題2課件:下面哪兩個數互為倒數?
師:同學們知道了什麼是倒數,那你能找出一個數的倒數嗎?那好,請完成這道題。
出示課件,請看這里,哪兩個數互為倒數?(生找)(生說教師演示)
提問:你用什麼好辦法這么快就找出了這三組數的倒數?(同桌互相說說看)(找幾名學生匯報)
師板書:求倒數的方法:分數的分子、分母交換位置。
同學們想出了找倒數的好方法,那就是分數的分子、分母交換位置,你們把老師想說的都說出來了,太棒了!我們一起來看一看(出示課件)。在這三組數里哪一組不同於其它兩組?對,6是整數,像6這樣的整數找倒數的方法可以先把整數寫成分母是1的分數,再找倒數。
2.師提問:再次出示連線題的課件,本題中的還有哪些數據沒有找到倒數?它們有沒有倒數?如果有,又是多少呢?同桌討論說說你的發現。
3.出示課件想一想。
我的發現:1的倒數是(1),0(沒有)倒數。
師提問:(1)為什麼1的倒數是1?
生答:(因為1×1=1「根據乘積是1的兩個數互為倒數」,所以1的倒數是1)
(2)為什麼0沒有倒數?
生答:(因為0與任何數相乘都等於0,而不等於1,所以0沒有倒數)
4.探討帶分數、小數的倒數的求法
師:看來像這樣的分數與整數它的倒數求法很簡單,可是我們學過的不僅僅是分數、整數,還有呢?這些數的倒數又該怎樣求呢?請同桌的同學討論一下,把你們討論的結果填在表格上。(課件出示)
你們有結果了嗎?誰願意到這里把你們組的討論結果說出來與大家共享(師切換實物投影),小組匯報討論結果,學生自己用投影展示討論結果並說明。
(師切換投影):老師也把求這一類數的倒數的方法寫出來了,一起看看我們想的是否一樣呢?(出示課件5)。
當你給帶分數、小於1的小數、大於1的小數找出倒數後你有沒有發現什麼規律?請你對照大屏幕說說自己的發現:
發現1:帶分數的倒數都(小於)本身;
發現2:比1 小的小數的倒數都(大於)本身,並且都(大於)1。
發現3:比1 大的小數的倒數都(小於)本身,並且都(小於)1。
(三)學以致用:
師:探究到這里,大家肯定有了很大的收獲,現在請大家閉上眼睛休息一下,休息時想一想什麼是倒數?再想一想求倒數的方法是什麼?讓學生再次記憶找倒數的方法。
1.想不想檢驗一下自己學的怎麼樣?
請打開課本24頁完成做一做和25頁練習六的第4題,(讓學生做在課本上,並找學生口答做一做的題。練習六的第4題連線用投影展示學生的作業)。
2.(課件出示)請你以打手勢的形式告訴老師你的答案。
(四)全課總結
今天學習了什麼?我們一起回顧總結出來好嗎?
什麼叫倒數?怎樣找出一個數的倒數?