二進制計演算法就是只用1和零來表示數字,我們平常說的是十進制,它是由0到9十個數字來表示的,具體的表示方法是,比如二進制0就是十進制的0,01就是十進制的1 11就是十進制的3, 100就是十進制的4。
二進制是計算技術中廣泛採用的一種數制。二進制數據是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。當前的計算機系統使用的基本上是二進制系統,數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。
加法法則: 0+0=0,0+1=1,1+0=1,1+1=10
減法,當需要向上一位借數時,必須把上一位的1看成下一位的(2)10。
減法法則: 0-0 =0,1-0=1,1-1=0,0-1=1 有借位,借1當(10) 看成 2 則 0 - 1 - 1 = 0 有借位 1 - 1 - 1 = 1 有借位。
乘法法則: 0×0=0,0×1=0,1×0=0,1×1=1
除法應注意: 0÷0 =0(無意義),0÷1 =0,1÷0 =0(無意義)
除法法則: 0÷1=0,1÷1=1
② 二進制怎麼算
二進制計算的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」。
二進制數(binaries)是逢2進位的進位制,0、1是基本算符;計算機運算基礎採用二進制。電腦的基礎是二進制。
在早期設計的常用的進制主要是十進制(因為我們有十個手指,所以十進制是比較合理的選擇,用手指可以表示十個數字,0的概念直到很久以後才出現,所以是1-10而不是0-9)。電子計算機出現以後,使用電子管來表示十種狀態過於復雜,所以所有的電子計算機中只有兩種基本的狀態,開和關。
二進制數與十進制數一樣,同樣可以進行加、減、乘、除四則運算。其演算法規則如下:
加運算:0+0=0,0+1=1,1+0=1,1+1=10,(逢2進1)。
減運算:1-1=0,1-0=1,0-0=0,0-1=1,(向高位借1當2)。
乘運算:0×0=0,0×1=0,1×0=0,1×1=1,(只有同時為「1」時結果才為「1」)。
除運算:二進制數只有兩個數(0,1),因此它的商是1或0。
加法0+0=0,0+1=1+0=1,1+1=10。
減法0-0=0,1-0=1,1-1=0,0-1=-1,10100-1010=1010。
乘法0×0=0,0×1=1×0=0,1×1=1。
③ 二進制的計算方式是什麼
二進制的計算方式是什麼
二進制的計算方式是什麼,二進制的運算規則非常簡單,而且計算出來的數字非常可靠,在技術上也是很容易實現的,下面大家就跟隨我一起來看看二進制的計算方式是什麼吧,希望對大家能有所幫助。
二進制數的表示法
二進制計演算法就是只用1和零來表示數字,我們平常說的是十進制,它是由0到9十個數字來表示的,具體的表示方法是,比如二進制0就是十進制的0,01就是十進制的1 11就是十進制的3, 100就是十進制的4。
二進制是計算技術中廣泛採用的一種數制。二進制數是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」。二進制數也是採用位置計數法,其位權是以2為底的冪。例如二進制數110.11,其權的大小順序為22、21、20、2-1、2-2。對於有n位整數,m位小數的二進制數用加權系數展開式表示,可寫為:
(N)2=an-1×2n-1+an-2×2n-2+……+a1×21+a0×20+a-1×2-1+a-2×2-2
+……+a-m×2-m=
式中aj表示第j位的.系數,它為0和1中的某一個數。
二進制數一般可寫為:(an-1an-2…a1a0.a-1a-2…a-m)2。
二進制
現在比較普及的電腦大多數都是數字式計算機而非模擬計算機,數字式計算機存儲的方法,幾乎都是通過二進制來進行的。計算機只能識別1跟0兩種狀態,如電流的「開」和「關」,電壓的「高」和「低」,磁場的「有」和「無」等。在數字世界裡沒有電影、沒有雜志、沒有一首首的樂曲,只有一個個的數字「1」和「0」。可以說,電腦裡面的計算,都是二進制計算的。因為計算機只能識別這兩種狀態。
計算
最簡單的辦法是,用系統自帶的「計算器」計算:開始――→附件――→打開計算器――→在版面上「查看」點選:科學型――→再點選「二進制」――→輸入二進制數字――→再點選「十進制」――→這樣就將二進制數字轉化為十進制數字了!
二進制的特點:
1、技術實現簡單,計算機是由邏輯電路組成,邏輯電路通常只有兩個狀態,開關的接通與斷開,這兩種狀態正好可以用「1」和「0」表示。
2、簡化運算規則:兩個二進制數和、積運算組合各有三種,運算規則簡單,有利於簡化計算機內部結構,提高運算速度。
3、適合邏輯運算:邏輯代數是邏輯運算的理論依據,二進制只有兩個數碼,正好與邏輯代數中的「真」和「假」相吻合。
4、易於進行轉換,二進制與十進制數易於互相轉換。
5、用二進製表示數據具有抗干擾能力強,可靠性高等優點。因為每位數據只有高低兩個狀態,當受到一定程度的干擾時,仍能可靠地分辨出它是高還是低。
(3)二進制數的算數方法是什麼擴展閱讀:
二進制的缺點:
1、用二進製表示一個數時,位數多。因此實際使用中多採用送入數字系統前用十進制,送入機器後再轉換成二進制數,讓數字系統進行運算,運算結束後再將二進制轉換為十進制供人們閱讀。
2、二進制和十六進制的互相轉換比較重要。不過這二者的轉換卻不用計算,每個C,C++程序員都能做到看見二進制數,直接就能轉換為十六進制數,反之亦然。
④ 二進制的運算方式
二進制的運算方式
二進制的運算方式,說到二進制可能有很多程序員都不陌生,二進制是編寫程序中最基本的一個演算法,沒有了二進制其他演算法就很難繼續,那二進制的運算方式是怎麼樣呢,以下是我整理的相關內容。
二進制的運算算術運算二進制的加法:0+0=0,0+1=1 ,1+0=1, 1+1=10(向高位進位);即7=111,10=10103=11。
二進制的減法:0-0=0,0-1=1(向高位借位) 1-0=1,1-1=0 (模二加運算或異或運算) ;
二進制的乘法:0 * 0 = 0 0 * 1 = 0,1 * 0 = 0,1 * 1 = 1 二進制的除法:0÷0 = 0,0÷1 = 0,1÷0 = 0 (無意義),1÷1 = 1 ;
邏輯運算二進制的或運算:遇1得1 二進制的與運算:遇0得0 二進制的非運算:各位取反。
二進制轉換為其他進制:
1、二進制轉換成十進制:基數乘以權,然後相加,簡化運算時可以把數位數是0的項不寫出來,(因為0乘以其他不為0的數都是0)。小數部分也一樣,但精確度較少。
2、二進制轉換為八進制:採用「三位一並法」(是以小數點為中心向左右兩邊以每三位分組,不足的`補上0)這樣就可以輕松的進行轉換。例:將二進制數(11100101.11101011)2轉換成八進制數。 (11100101.11101011)2=(345.353)8
3、二進制轉換為十六進制:採用的是「四位一並法」,整數部分從低位開始,每四位二進制數為一組,最後不足四位的,則在高位加0補足四位為止,也可以不補0。
小數部分從高位開始,每四位二進制數為一組,最後不足四位的,必須在低位加0補足四位,然後用對應的十六進制數來代替,再按順序寫出對應的十六進制數。
二進制邏輯運算
邏輯變數之間的運算稱為邏輯運算。二進制數1和0在邏輯上可以代表「真」與「假」、「是」與「否」、「有」與「無」。這種具有邏輯屬性的變數就稱為邏輯變數。 計算機的邏輯運算的算術運算的主要區別是:邏輯運算是按位進行的,位與位之間不像加減運算那樣有進位或借位的聯系。
邏輯運算主要包括三種基本運算:邏輯加法(又稱「或」運算)、邏輯乘法(又稱「與」運算)和邏輯否定(又稱「非」運算)。此外,「異或」運算也很有用。
邏輯運算符簡介
在形式邏輯中,邏輯運算符或邏輯聯結詞把語句連接成更復雜的復雜語句。例如,假設有兩個邏輯命題,分別是「正在下雨」和「我在屋裡」,我們可以將它們組成復雜命題「正在下雨,並且我在屋裡」或「沒有正在下雨」或「如果正在下雨,那麼我在屋裡」。一個將兩個語句組成的新的語句或命題叫做復合語句或復合命題。
演算法
邏輯加法(「或」運算)
邏輯加法通常用符號「+」或「∨」來表示。邏輯加法運算規則如下:
0+0=0, 0∨0=0
0+1=1, 0∨1=1
1+0=1, 1∨0=1
1+1=1, 1∨1=1
從上式可見,邏輯加法有「或」的意義。也就是說,在給定的邏輯變數中,A或B只要有一個為1,其邏輯加的結果就為1;只有當兩者都為0時邏輯加的結果才為0。
邏輯乘法(「與」運算)
邏輯乘法通常用符號「×」或「∧」或「·」來表示。邏輯乘法運算規則如下:
0×0=0, 0∧0=0, 0·0=0
0×1=0, 0∧1=0, 0·1=0
1×0=0, 1∧0=0, 1·0=0
1×1=1, 1∧1=1, 1·1=1
不難看出,邏輯乘法有「與」的意義。它表示只當參與運算的邏輯變數都同時取值為1時,其邏輯乘積才等於1。
邏輯否定("非"運算)
邏輯非運算又稱邏輯否運算。其運算規則為:
0=1 「非」0等於1
1=0 「非」1等於0
⑤ 二進制的計算方法
加法:0+0=0;0+1=1;1+0=1;1+1=10;0進位為1。減法:0-0=0,1-0=1,1-1=0,0-1=1。
二進數轉四進制時,以小數點為起點,向左和向右兩個方向分別進行分段,每兩個數字一段,不足兩位的分別在左邊或右邊補零。
二進制數轉換成八進制數:從小數點開始,整數部分向左、小數部分向右,每3位為一組用一位八進制數的數字表示,不足3位的要用「0」補足3位,就得到一個八進制數。
二進制數轉換成十六進制數:二進制數轉換成十六進制數時,只要從小數點位置開始,向左或向右每四位二進制劃分一組(不足四位數可補0),然後寫出每一組二進制數所對應的十六進制數碼即可。
(5)二進制數的算數方法是什麼擴展閱讀:
計算機採用二進制的原因:
1、技術實現簡單,計算機是由邏輯電路組成,邏輯電路通常只有兩個狀態,開關的接通與斷開,這兩種狀態正好可以用「1」和「0」表示。
2、簡化運算規則:兩個二進制數和、積運算組合各有三種,運算規則簡單,有利於簡化計算機內部結構,提高運算速度。
3、適合邏輯運算:邏輯代數是邏輯運算的理論依據,二進制只有兩個數碼,正好與邏輯代數中的「真」和「假」相吻合。
4、易於進行轉換,二進制與十進制數易於互相轉換。
5、用二進製表示數據具有抗干擾能力強,可靠性高等優點。因為每位數據只有高低兩個狀態,當受到一定程度的干擾時,仍能可靠地分辨出它是高還是低。
⑥ 二進制的計算方式是
二進制參與邏輯運算,與或非常用的三種計算方式。
加法
二進制加法有四種情況: 0+0=0,0+1=1,1+0=1,1+1=10(0 進位為1) 。
乘法
二進制乘法有四種情況: 0×0=0,1×0=0,0×1=0,1×1=1 。
減法
二進制減法有四種情況:0-0=0,1-0=1,1-1=0,0-1=1 。
除法
二進制除法有兩種情況(除數只能為1):0÷1=0,1÷1=1。
以上就是運算的基礎。
在基數b的位置記數系統(其中b是一個正自然數,叫做基數),b個基本符號(或者叫數字)對應於包括0的最小b個自然數。 要產生其他的數,符號在數中的位置要被用到。最後一位的符號用它本身的值,向左一位其值乘以b。一般來講,若b是基底,我們在b進制系統中的數表示為 的形式,並按次序寫下數字a0a1a2a3...ak。這些數字是0到b-1的自然數 。
其它數制轉為二進制後再運算。
整數部分採用 "除2取余,逆序排列"法。具體做法是:用2整除十進制整數,可以得到一個商和余數;再用2去除商,又會得到一個商和余數,如此進行,直到商為小於1時為止,然後把先得到的余數作為二進制數的低位有效位,後得到的余數作為二進制數的高位有效位,依次排列起來 。
可以更多參考邏輯計算運算。