① 分析電化學的發展趨勢
電化學儲能電站通過化學反應進行電池正負極的充電和放電,實現能量轉換。傳統電池技術以鉛酸電池為代表,由於其對環境危害較大,已逐漸被鋰離子、鈉硫等性能更高、更安全環保的電池所替代。電化學儲能的響應速度較快,基本不受外部條件干擾,但投資成本高、使用壽命有限,且單體容量有限。隨著技術手段的不斷發展,電化學儲能正越來越廣泛地應用到各個領域,尤其是電動汽車和電力系統中。
近年電化學儲能裝機規模快速發展 主要以鋰電池為主
2018年是中國電化學儲能發展史的分水嶺。一方面是因為電化學儲能累積裝機功率規模首次突破GW,另一方面是因為電化學儲能呈現爆發式增長,新增電化學儲能裝機功率規模高達612.8MW,對比2017年新增功率規模147.3MW,同比增長316%。截至2019年底,中國電化學儲能市場累積裝機功率規模為1709.60MW,同比增長59.4%。
—— 以上數據來源於前瞻產業研究院《中國儲能電站行業市場前瞻與投資規劃分析報告》
② 電化學基礎知識點總結歸納
電化學的知識點很多,學生們需要扎實掌握,我整理了一些重要電化學知識點。
1、概念:化學能轉化為電能的裝置叫做原電池。
2、組成條件:
(1)兩個活潑性不同的電極
(2)電解質溶液
(3)電極用導線相連並插入電解液構成閉合迴路
3、電子流向:
外電路:負極——導線—— 正極
內電路:鹽橋中陰離子移向負極的電解質溶液,鹽橋中陽離子移向正極的電解質溶液。
4、電極反應:
以鋅銅原電池為例:
負極:氧化反應:Zn-2e=Zn2+(較活潑金屬)
正極:還原反應:2H++2e=H2↑(較不活潑金屬)
總反應式:Zn+2H+=Zn2++H2↑
5、正、負極的判斷:
(1)從電極材料:一般較活潑金屬為負極;或金屬為負極,非金屬為正極。
(2)從電子的流動方向:負極流入正極
(3)從電流方向:正極流入負極
(4)根據電解質溶液內離子的移動方向:陽離子流向正極,陰離子流向負極
1、電化學分析法也稱電分析化學法,是基於物質在溶液中的電化學性質基礎上的一類儀器分析方法,由德國化學家C.溫克勒爾在19世紀首先引入分析領域,儀器分析法始於1922年捷克化學家 J.海洛夫斯基建立極譜法。通常將試液作為化學電池的一個組成部分,根據該電池的某種電參數(如電阻、電導、電位、電流、電量或電流-電壓曲線等)與被測物質的濃度之間存在一定的關系而進行測定的方法。
2、電分析化學是利用物質的電學和電化學性質進行表徵和測量的科學,它是電化學和分析化學學科的重要組成部分,與其它學科,如物理學、電子學、計算機科學、材料科學以及生物學等有著密切的關系。電分析化學已經建立了比較完整的理論體系。電分析化學既是現代分析化學的一個重要分支,又是一門表面科學,在研究表面現象和相界面過程中發揮著越來越重要的作用。
3、電化學分析法是應用電化學原理和技術,利用化學電池內被分析溶液的組成及含量與其電化學性質的關系而建立起來的一類分析方法,其操作方便。許多電化學分析法既可定性,又可定量;既能分析有機物,又能分析無機物,並且許多方法便於自動化,在生產等各個領域有著廣泛的應用。
以上是我整理的電化學的知識點,希望能幫到你。
③ 電化學分析法的應用
(1)電化學分析法不僅可用於物質組成和含量的定量分析,也可用於結構分析,如進行元素價態和形態分析。
(2)傳統電化學分析法主要用於無機離子的分析,隨著該類技術的發展,測定有機化合物的應用也日益廣泛,在葯物分析的應用也越來越多。
(3)隨著電極製造技術的不斷進步,超微電極直接刺入生物體內,活體分析也成為現實。
(4)電化學分析法還可用作為科學研究的工具,如化學平衡常數測定、化學反應機理研究、研究電極過程動力學、氧化還原過程、催化反應過程、有機電極過程、吸附現象等等。
(5)電化學分析法還因為信號易傳遞、易於實現自動化和連續化以及儀器簡單、價格便宜等特點,在環境監測與控制、工業自動控制和在線分析領域有著重要的地位。
電分析化學是利用物質的電學和電化學性質進行表徵和測量的科學,它是電化學和分析化學學科的重要組成部分,與其它學科,如物理學、電子學、計算機科學、材料科學以及生物學等有著密切的關系。電分析化學已經建立了比較完整的理論體系。電分析化學既是現代分析化學的一個重要分支,又是一門表面科學,在研究表面現象和相界面過程中發揮著越來越重要的作用。
1.電分析化學方法是一種公認的快速、靈敏、准確的微量和痕量分析方法。溶出伏安法測定重金屬離子的濃度可以低至10-12mol/L,結合催化法,測定靈敏度可以達到10-14mol/L,如果結合生物酶的專一催化反應,檢出限可以達到10-16mol/L,電分析儀器簡單,價格低廉,特別是在有機、生物和葯物、環境分析中與越來越顯示出很大的潛力和優越性。另外。在一些苛刻的環境條件下,如流動的河流、非水化學流動過程、熔岩及核反應堆芯的流體中,電化學方法也是非常有用的。
2.電極過程動力學和電極反應機理的研究,是電分析化學的另外一個重要方面。 電極過程中常常包含有在溶液中或在電極表面上進行的化學步驟、新相的生成和表面擴散步驟等。電極過程動力學的研究在冶金、電鍍、有機物與無機物的電合成、化學電源、化學感測器以及金屬材料的腐蝕防護等方面都具有重要意義。
3.物質在電極上的氧化還原反應機理是十分復雜的,但它的研究結果對許多學科都具有借鑒意義,特別是在生物化學和葯物學研究領域。例如,葯物在人體內的代謝過程就是一個生物氧化還原過程,與葯物在電極上的氧化還原反應具有某些相似性。從電極反應的機理,可以了解這些葯物的生物氧化還原過程。亦可研究熱、光、氧、酒、酸、鹼等對生物過程的影響,研究聯合作用、協同效應和拒抗作用,研究人體中常見物質的影響等,為葯物的臨床應用和葯理葯效的研究提供理論依據。
④ 什麼是 電化學原位拉曼光譜法
樓主你好:
電化學原位拉曼光譜法, 是利用物質分子對入射光所產生的頻率發生較大變化的散射現象, 將單色入射光(包括圓偏振光和線偏振光) 激發受電極電位調制的電極表面, 通過測定散射回來的拉曼光譜信號(頻率、強度和偏振性能的變化)與電極電位或電流強度等的變化關系。一般物質分子的拉曼光譜很微弱, 為了獲得增強的信號, 可採用電極表面粗化的辦法, 可以得到強度高104-107倍的表面增強拉曼散射(Surface Enahanced Raman Scattering, SERS) 光譜, 當具有共振拉曼效應的分子吸附在粗化的電極表面時, 得到的是表面增強共振拉曼散射(SERRS)光譜, 其強度又能增強102-103。
電化學原位拉曼光譜法的測量裝置主要包括拉曼光譜儀和原位電化學拉曼池兩個部分。拉曼光譜儀由激光源、收集系統、分光系統和檢測系統構成, 光源一般採用能量集中、功率密度高的激光, 收集系統由透鏡組構成, 分光系統採用光柵或陷波濾光片結合光柵以濾除瑞利散射和雜散光以及分光檢測系統採用光電倍增管檢測器、半導體陣檢測器或多通道的電荷藕合器件。原位電化學拉曼池一般具有工作電極、輔助電極和參比電極以及通氣裝置。為了避免腐蝕性溶液和氣體侵蝕儀器, 拉曼池必須配備光學窗口的密封體系。在實驗條件允許的情況下, 為了盡量避免溶液信號的干擾, 應採用薄層溶液(電極與窗口間距為0.1~1mm) , 這對於顯微拉曼系統很重要, 光學窗片或溶液層太厚會導致顯微系統的光路改變, 使表面拉曼信號的收集效率降低。電極表面粗化的最常用方法是電化學氧化- 還原循環(Oxidation-Rection Cycle,ORC)法, 一般可進行原位或非原位ORC處理。更多質量檢測、分析測試、化學計量、標准物質相關技術資料請參考中檢所標准品對照品 www.rmhot.com
目前採用電化學原位拉曼光譜法測定的研究進展主要有: 一是通過表面增強處理把測檢體系拓寬到過渡金屬和半導體電極。雖然電化學原位拉曼光譜是現場檢測較靈敏的方法, 但僅能有銀、銅、金三種電極在可見光區能給出較強的SERS。許多學者試圖在具有重要應用背景的過渡金屬電極和半導體電極上實現表面增強拉曼散射。二是通過分析研究電極表面吸附物種的結構、取向及對象的SERS 光譜與電化學參數的關系,對電化學吸附現象作分子水平上的描述。三是通過改變調制電位的頻率, 可以得到在兩個電位下變化的「時間分辨譜」, 以分析體系的SERS 譜峰與電位的關系, 解決了由於電極表面的SERS 活性位隨電位而變化而帶來的問題。
⑤ 電化學分析法的特點
電化學分析法具有以下特點。
①靈敏度較高。最低分析檢出限可達10-12mol/L。
②准確度高。如庫侖分析法和電解分析法的准確度很高,前者特別適用於微量成分的測定,後者適用於高含量成分的測定。
③測量范圍寬。電位分析法及微庫侖分析法等可用於微量組分的測定;電解分析法、電容量分析法及庫侖分析法則可用於中等含量組分及純物質的分析。
④ 儀器設備較簡單,價格低廉,儀器的調試和操作都較簡單,容易實現自動化。
⑤ 選擇性差。電化學分析的選擇性一般都較差,但離子選擇性電極法、極譜法及控制陰極電位電解法選擇性較高。根據所測量電學量的不同,電化學分析法可分為電導分析法、電位分析法、伏安法和極譜分析法、電解和庫侖分析法。
發展歷史
電分析化學的發展具有悠久的歷史,是與尖端科學技術和學科的發展緊密相關的。近代電分析化學,不僅進行組成的形態和成分含量的分析,而且對電極過程理論,生命科學、能源科學、信息科學和環境科學的發展具有重要的作用。
作為一種分析方法,早在18世紀,就出現了電解分析和庫侖滴定法
19世紀,出現了電導滴定法,玻璃電極測pH值和高頻滴定法。
1922年,極譜法問世,標志著電分析方法的發展進入了新的階段。
二十世紀六十年代,離子選擇電極及酶固定化製作酶電極相繼問世。
二十世紀70年代,發展了不僅限於酶體系的各種生物感測器之後,微電極伏安法的產生擴展了電分析化學研究的時空范圍,適應了生物分析及生命科學發展的需要。
縱觀當今世界電分析化學的發展,美國電分析化學力量最強,研究內容集中於科技發展前沿,涉及與生命科學直接相關的生物電化學;與能源、信息、材料等環境相關的電化學感測器和檢測、研究電化學過程的光譜電化學等。
捷克和前蘇聯在液-液界面電化學研究有很好的基礎。
日本東京,京都大學在生物電化學分析,表面修飾與表徵、電化學感測器及電分析新技術方法等方面很有特色。
英國一些大學則重點開展光譜電化學、電化學熱力學和動力學及化學修飾電極的研究。
產生極化的原因有以下兩種:濃差極化和電化學極化。
1、濃差極化:在有電流流過電極時,由於溶液中離子的擴散速度跟不上電極反應速度而導致電極表面附近的離子濃度與本體溶液中不同,從而使有電流流過電極時的電極電位值與平衡電極電位產生偏差的現象,叫濃差極化。
2、電化學極化:由於電極反應速度有限造成電極上帶電程度與平衡時不同,而導致有電流通過時的電極電位值偏離平衡時的電極電位的現象,叫電化學極化。
⑥ 電化學有哪些應用領域
電化學的應用領域:
1、電解工業,其中的氯鹼工業是僅次於合成氨和硫酸的無機物基礎工業、耐綸66的中間單體己二腈是通過電解合成的;鋁、鈉等輕金屬的冶煉,銅、鋅等的精煉也都用的是電解法;
2、機械工業要用電鍍、電拋光、電泳塗漆等來完成部件的表面精整;
3、環境保護可用電滲析的方法除去氰離子、鉻離子等污染物;
4、化學電源;
5、金屬的防腐蝕問題,大部分金屬腐蝕是電化學腐蝕問題;
6、許多生命現象如肌肉運動、神經的信息傳遞都涉及到電化學機理;
7、應用電化學原理發展起來的各種電化學分析法已成為實驗室和工業監控的不可缺少的手段。
電化學(electrochemistry)作為化學的分支之一,是研究兩類導體(電子導體,如金屬或半導體,以及離子導體,如電解質溶液)形成的接界面上所發生的帶電及電子轉移變化的科學。傳統觀念認為電化學主要研究電能和化學能之間的相互轉換,如電解和原電池。但電化學並不局限於電能出現的化學反應,也包含其它物理化學過程,如金屬的電化學腐蝕,以及電解質溶液中的金屬置換反應。
利用電化學手段分離溶液中的金屬離子、有機分子的方法,共分四類:
1、控制電位的電解分離法
當溶液中存在兩種或兩種以上的金屬離子時,如果它們的還原電位相近,□例如Cu□(標准電極電位□□=+0.345伏)和Bi□(□□=0.2伏),則在電解時都會還原析出,達不到分離的目的。圖1兩種金屬離子A和B的分解電位表示,如果控制陰極電位為□,則金屬離子A可產生強度為□的電流,即可被還原;而金屬離子B的電流強度極小,即幾乎不能被還原,這樣即可達到分離目的,並分別測定A和B。在電解過程中,陰極電位□□□是在不斷變化的,□□=□式中□□為標准電極電位;□□為氣體常數;□為熱力學溫度;□為電極過程電子轉移數;□為法拉第常數;□為離子活度;□□為陰極超電壓。電解時,離子濃度不斷降低,□□的負值不斷增加,以致B也被電解出來。為了控制陰極電位,要用圖2控制電位的線路的線路隨時調整外加電壓。,e□是鉑絲對電極,e□是參比電極(飽和甘汞電極)。選定的e□的電位(相對於e□)可從電位計V讀出,電解電流從毫安計A讀出,在電解過程中不斷調整電阻□以保持陰極電位不變。
至於選擇什麼電位要看實驗條件,例如在分別測定Cu□和Bi□時,由於兩者電位太相近,需要在溶液中加入酒石酸,調節pH=5.8~6.0,Bi□與酒石酸生成的絡合物比Cu□的穩定得多,使兩者的分解電壓相差得大一些,然後再加入適量的肼,以加速Cu□的還原。在這種條件下,控制陰極電位為-0.30伏,銅先電解出來,稱出陰極的增重後,調節pH為4.5~5.5,控制陰極電位為-0.40伏,可將鉍全部電解出來。如果溶液中還有Pb□,可將電位控制在-0.50伏,進行電解。應用此法時,後被電解的離子的濃度不能超過先被電解的離子的濃度。
2、汞陰極電解分離法
H□在汞陰極上被還原時,有很大的超電壓,所以在酸性溶液中可以分離掉一些容易被還原的金屬離子,使一些重金屬(如銅、鉛、鎘、鋅)沉積在汞陰極上,形成汞齊,同時保留少量不容易被還原的離子,如鹼金屬、鹼土金屬、鋁、鐵、鎳、鉻、鈦、釩、鎢、硅等。
3、內電解分離法
在酸性溶液中,利用金屬氧化-還原電位的不同,可以組成一個內電解池,即不需要外加電壓就可以進行電解。例如要從大量鉛中分離微量銅,在硫酸溶液中Cu□比Pb□先還原,因此可將鉛板作為一個電極,與鉑電極相連,組成一個內電解池,它產生一個自發的電動勢,來源於Pb的氧化和Cu□的還原。這個電動勢使反應能夠進行,直到電流趨近於零時,內電解池就不再作用了。內電解可以分離出微量的容易還原的金屬離子,缺點是電解進行緩慢,因此應用不廣。
4、電滲析法
液體中的離子或荷電質點能在電場的影響下遷移。由於離子的性質不同,遷移的速率也不同,正負電荷移動的方向也不同。當在電池的兩極加上一個直流電壓時,可以把一些有機物的混合物分離。如臨床實驗中常用此法研究蛋白質,將試樣放在一個載器上,外加電場後,荷電質點沿著載器向電荷相反的電極遷移,因它們移動的速率不同而分離,一般能把血清蛋白分成五部分。改進實驗技術可使濃縮斑點的寬度達到25微米左右,然後進行電滲析,可將血清蛋白分成二十個很清晰的部分。
⑦ 電化學方法原理和應用
電化學(Electrochemistry)是研究電和化學反應相互關系的科學,即研究兩類導體形成的帶電界面現象及其上所發生的變化的科學。電和化學反應相互作用可通過電池來完成,也可利用高壓靜電放電來實現(如氧通過無聲放電管轉變為臭氧),二者統稱電化學,後者為電化學的一個分支,稱放電化學。由於放電化學有了專門的名稱,因而,電化學往往專門指「電池的科學」。 電化學如今已形成了合成電化學、量子電化學、半導體電化學、有機導體電化學、光譜電化學、生物電化學等多個分支。電化學在化工、冶金、機械、電子、航空、航天、輕工、儀表、醫學、材料、能源、金屬腐蝕與防護、環境科學等科技領域獲得了廣泛的應用。電化學是研究電和化學反應相互關系的科學。
在物理化學眾多分支中,電化學是唯一以大工業為基礎的學科。其應用分為以下幾個方面:①電解工業:其中氯鹼工業是僅次於合成氨和硫酸的無機物基礎工業、耐綸66的中間單體己二腈是通過電解合成的;鋁、鈉等輕金屬的冶煉,銅、鋅等的精煉也都用的是電解法;②機械工業:要用電鍍、電拋光、電泳塗漆等來完成部件的表面精整;③環境保護:用電滲析的方法除去氰離子、鉻離子等污染物;④化學電源;⑤金屬防腐蝕:大部分金屬腐蝕是電化學腐蝕問題;⑥許多生命現象如肌肉運動、神經的信息傳遞都涉及到電化學機理;⑦應用電化學原理發展起來的各種電化學分析法,已成為實驗室和工業監控不可缺少的手段。現在電化學熱點問題多,如電化學工業、電化學感測器、金屬腐蝕、生物電化學、化學電源等。
一、電化學兩種原理
原電池是將化學能轉變成電能的裝置。根據定義,普通的干電池、燃料電池等都可以稱為原電池。原電池,與蓄電池相對,又稱非蓄電池,是利用兩個電極之間金屬性的不同,產生電勢差,從而使電子流動,產生電流,是電化電池的一種,其電化反應不能逆轉,只能將化學能轉換為電能,簡單來講就是不能重新儲存電力。原電池工作原理:原電池是將一個能自發進行的氧化還原反應的氧化反應和還原反應分別在原電池的負極和正極上發生,從而在外電路中產生電流。
電解池是將電能轉化為化學能的裝置。電解是使電流通過電解質溶液(或熔融的電解質)而在陰、陽兩極引起氧化還原反應的過程。
二、電化學的發展
電學最早起源於靜電起電,1791年伽伐尼發表了金屬能使蛙腿肌肉抽縮的「動物電」現象,一般認為這是電化學起源。1799年伏打在伽伐尼工作的基礎上發明了用不同的金屬片夾濕紙組成的「電堆」,即現今所謂「伏打堆」,這是化學電源的雛型。在直流電機發明以前,各種化學電源是唯一能提供恆穩電流的電源。1834年法拉第電解定律的發現為電化學奠定了定量基礎。
19世紀下半葉,赫爾姆霍茲和吉布斯的工作,賦於電池的「起電力」(今稱「電動勢」)以明確的熱力學含義;1889年能斯特用熱力學導出了參與電極反應的物質濃度與電極電勢的關系,即著名的能斯脫公式;1923年德拜和休克爾提出了人們普遍接受的強電解質稀溶液靜電理論,大大促進了電化學在理論探討和實驗方法方面的發展。
20世紀40年代以後,電化學暫態技術的應用和發展、電化學方法與光學和表面技術的聯用,使人們可以研究快速和復雜的電極反應,可提供電極界面上分子的信息。電化學一直是物理化學中比較活躍的分支學科,它的發展與固體物理、催化、生命科學等學科的發展相互促進、相互滲透。
三、電化學研究內容
電池由兩個電極和電極之間的電解質構成,因而電化學的研究內容應包括兩個方面:一是電解質的研究,即電解質學,其中包括電解質的導電性質、離子的傳輸性質、參與反應離子的平衡性質等,其中電解質溶液的物理化學研究常稱作電解質溶液理論;另一方面是電極的研究,即電極學,其中包括電極的平衡性質和通電後的極化性質,也就是電極和電解質界面上的電化學行為。電解質學和電極學的研究都會涉及到化學熱力學、化學動力學和物質結構。
四、電化學分析方法
電化學分析法(electrochemical analysis)也稱電分析化學法,是基於物質在溶液中的電化學性質基礎上的一類儀器分析方法,由德國化學家C.溫克勒爾在19世紀首先引入分析領域,儀器分析法始於1922年捷克化學家 J.海洛夫斯基建立極譜法。通常將試液作為化學電池的一個組成部分,根據該電池的某種電參數(如電阻、電導、電位、電流、電量或電流-電壓曲線等)與被測物質的濃度之間存在一定的關系而進行測定的方法。
電分析化學是利用物質的電學和電化學性質進行表徵和測量的科學,它是電化學和分析化學學科的重要組成部分,與其它學科,如物理學、電子學、計算機科學、材料科學以及生物學等有著密切的關系。電分析化學已經建立了比較完整的理論體系。電分析化學既是現代分析化學的一個重要分支,又是一門表面科學,在研究表面現象和相界面過程中發揮著越來越重要的作用。
電化學分析法是應用電化學原理和技術,利用化學電池內被分析溶液的組成及含量與其電化學性質的關系而建立起來的一類分析方法,其操作方便。許多電化學分析法既可定性,又可定量;既能分析有機物,又能分析無機物,並且許多方法便於自動化,在生產等各個領域有著廣泛的應用。
⑧ 電化學的發展
在1663年,德國物理學家 Otto von Guericke 創造了第一個發電機,通過在機器中的摩擦而產生靜電。這個發電機將一個巨大的硫球放入玻璃球中,並固定在一棵軸上製成的。通過搖動曲軸來轉動球體,當一個襯墊與轉動的球發生摩擦的時候就會產生靜電火花。 這個球體可以拆卸並可以用作電學試驗的來源。
在17世紀中葉,法國化學家 Charles François de Cisternay Fay 發現了兩種不同的靜電,即同種電荷相互排斥而不同種電荷相互吸引。 Du Fay 發布說電由兩種不同液體組成:vitreous (拉丁語」玻璃「),或者正電;以及resinous, 或者負電。這便是電的雙液體理論,這個理論被17世紀晚期Benjamin Franklin 的單液體理論所否定。
1781年,查爾斯.奧古斯丁 庫侖 (Charles-Augustin de Coulomb) 在試圖研究由英國科學家Joseph Priestley 提出的電荷相斥法則的過程中發展了靜電相吸的法則。
1791年伽伐尼發表了金屬能使蛙腿肌肉抽縮的「動物電」現象,一般認為這是電化學的起源。1799年伏打在伽伐尼工作的基礎上發明了用不同的金屬片夾濕紙組成的「電堆」,即現今所謂「伏打堆」。這是化學電源的雛型。在直流電機發明以前,各種化學電源是唯一能提供恆穩電流的電源。1834年法拉第電解定律的發現為電化學奠定了定量基礎。
19世紀下半葉,赫爾姆霍茲和吉布斯的工作,賦於電池的「起電力」(今稱「電動勢」)以明確的熱力學含義;1889年能斯特用熱力學導出了參與電極反應的物質濃度與電極電勢的關系,即著名的能斯脫公式;1923年德拜和休克爾提出了人們普遍接受的強電解質稀溶液靜電理論,大大促進了電化學在理論探討和實驗方法方面的發展。
20世紀40年代以後,電化學暫態技術的應用和發展、電化學方法與光學和表面技術的聯用,使人們可以研究快速和復雜的電極反應,可提供電極界面上分子的信息。電化學一直是物理化學中比較活躍的分支學科,它的發展與固體物理、催化、生命科學等學科的發展相互促進、相互滲透。
在物理化學的眾多分支中,電化學是唯一以大工業為基礎的學科。它的應用主要有:電解工業,其中的氯鹼工業是僅次於合成氨和硫酸的無機物基礎工業;鋁、鈉等輕金屬的冶煉,銅、鋅等的精煉也都用的是電解法;機械工業使用電鍍、電拋光、電泳塗漆等來完成部件的表面精整;環境保護可用電滲析的方法除去氰離子、鉻離子等污染物;化學電源;金屬的防腐蝕問題,大部分金屬腐蝕是電化學腐蝕問題;許多生命現象如肌肉運動、神經的信息傳遞都涉及到電化學機理。應用電化學原理發展起來的各種電化學分析法已成為實驗室和工業監控的不可缺少的手段。
⑨ 電化學分析法的主要方法
電導法
是用電導儀直接測量電解質溶液的電導率的方法。
電化學分析法電位滴定法
是在用標准溶液滴定待測離子過程中,用指示電極的電位變化指示滴定終點的到達,是把電位測定與滴定分析互相結合起來的一種測試方法。
電化學分析法電解分析法
是將直流電壓施加於電解池的兩個電極上,根據電極增加的質量計算被測物的含量。
電化學分析法伏安法
根據電解過程中的電流電壓曲線(伏安曲線)來進行分析的方法。
電化學分析法溶出伏安法
將恆電位電解富集法與伏安法結合的一種極譜分析方法。它首先將欲測物質在適當電位下進行電解並富集在固定表面積的特殊電極上,然後反向改變電位,讓富集在電極上的物質重新溶出,同時記錄電流電壓曲線。根據溶出峰電流的大小進行定量分析。
電化學分析法電位溶出分析法
在恆電位下將被測物質電解富集在工作電極上,然後斷開恆電位電路,由電解液中的氧化劑將被富集的物質溶解出來,同時記錄溶出時的電位時間曲線,根據曲線上溶出階的長度進行定量,這種方法縮寫為P.S.A.。
電位溶出分析法與溶出伏安法之間主要區別在於前者在溶出時沒有電流流過工作電極,而後者具有背景電流,在某些情況下可能淹沒溶出峰。
⑩ 電分析化學的發展歷史和展望
初期階段,方法原理的建立
1801年W.Cruikshank,發現金屬的電解作銅和銀的定性分析方法.
1834年M.Faraday 發表關於電的實驗研究論文,提出Faraday定律Q=nFM.
1889年W.Nernst提出能斯特方程.
1922年,J.Heyrovsky,創立極譜學.1925年,志方益三製作了第一台極譜儀.1934年D.Ilkovic提出擴散電流方程.
(Id = k C)
電分析方法體系的發展與完善
電分析成為獨立方法分支的標志是什麼呢 就是上述三大定量關系的建立.50 年代,極譜法靈敏度,和電位法pH測定傳導過程沒有很好解決. 固體電子線路出現,從儀器上開始突破,克服充電電流的問題,方波極譜,1952 G.C.Barker提出方波極譜.1966年S.Frant和 J.Ross提出單晶(LaF3)作為F— 選擇電極,膜電位理論建立完善.其它分析方法,催化波和溶出法等的發展,主要從提高靈敏度方面作出貢獻.
時間和空間上體現快,小 與大 .
(1)化學修飾電極(chemically modified electrodes)
(2)生物電化學感測器(Biosensor)
(3)光譜一電化學方法 ( Electrospectrochemistry)
(4)超微電極(Ultramicroelectrodes)
(5)另一個重要內容是微型計算機的應用,使電分析方法產生飛躍. 1.已知電極反應Ag+ + e- Ag的 為0.799V,電極 反應Ag2C2O4+2e- 2Ag+C2O42-的標准電極電位
為0.490V,求Ag2C2O4的溶度積常數.
解 提示:標准電極電位 是電對Ag+/Ag在化學反應:2Ag++ C2O42- Ag2C2O4平衡時,[C2O42-]=
1mol·L-1的電極電位.
根據能斯特方程: = E Ag+,Ag =
+0.059lg[Ag+] =
=已知 =0.490V,=0.799,令[C2O42-]=1
得到0.490=0.799+0.59lg(ksp/1)1/2
lgKsp=-0.309×2/0.059=-10.475
Ksp=3.4 × 10-11
2.計算AgCl+e Ag+Cl-電極反應的標准電極電位
( EAgCl,Ag =0.799V,氯化銀的Ksp=1.8×10-10)
解 提示:標准電極電位是指電極反應中個組分活度等於1時的電極電位.本題中,Ag和AgCl是固體,活度是常數,作為1.故只要計算出[Cl-]=1時銀電極的電極電位,就是該電極反應的標准電極電位.
根據能斯特方程,銀電極的電極電位為:
+0.0591lg[Ag+]
由於Cl-與Ag+發生沉澱反應,沉澱平衡為:
Ag++ Cl-= AgCl↓
當溶液中[Cl-]=1mol·L-1時,可求得Ag+濃度:
[Ag+]=Ksp/ [Cl-]= Ksp於是得到:
= E Ag+,Ag
= +0.0591lg Ksp
=0.799+0.059lg(1.8×10-10)
=0.224V
3. KMnO4在酸性溶液中發生電極反應:
其標准電極電位為1.51V.已知
試問:PH=2時,KMnO4能否氧化Br-和I-,當PH=6時,能否氧化Br-和I-.
解 設[MnO4-]=[Mn2+]得到:
當PH=2時,
故KMnO4可以氧化Br-和I-
當PH=6時,
故KMnO4可以氧化I-,但不能氧化Br-
1.濃度均為1*10-6mol /L的硫,鎳離子,對氯化銀晶體膜電極的干擾程度,硫 鎳(填>,=或<.已知:KCl,Br=KCl,S)
(南開大學2002年)
2.活動載體膜電極的敏感膜是( )
A 晶體膜 B 固態無機物
C 固態有機物 D 液態有機化合物
(南開大學2001年)
3.氨氣敏電極是以0.01mol/L氯化銨作為緩沖溶液,指示電極可選用( )
A Ag-AgCl電極 B 晶體膜氯電極
C 氨電極 D pH玻璃電極
(南開大學2003年)
4.製造晶體膜電極時,常用氯化銀晶體摻加硫化銀後一起壓製成敏感膜,加入硫化銀是為了( )
A.提高電極的靈敏度 B. 提高電極的選擇性
C.降低電極的內阻 D.延長電極的使用壽命
5. pH玻璃電極膜電位的產生是由於:
(A)膜內外電子轉移 (B)氫離子得電子
(C)氫氧根失電子
(D)溶液中和玻璃膜水化層的氫離子的交換作用
(鄭州大學2002年)
6.用鈣離子選擇電極測定3.30*10-4 mol/L CaCl2溶液的活度,若溶液中存在0.20mol/L的NaCl.
計算:
(1).由於NaCl的存在所引起的相對誤差是多少 (已知KCa2+.Na+ = 0.0016)
(2)欲使鈉離子造成的誤差減少至2%,允許NaCl的最高濃度是多少